Neuroscience
-
Enhanced expression of proinflammatory cytokines and chemokines has long been linked to neuronal and glial responses to brain injury. Indeed, inflammation in the brain has been associated with damage that stems from conditions as diverse as infection, multiple sclerosis, trauma, and excitotoxicity. In many of these brain injuries, disruption of the blood-brain barrier (BBB) may allow entry of blood-borne factors that contribute to, or serve as the basis of, brain inflammatory responses. ⋯ The mRNA levels for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, cytokines normally expressed during the earliest stage of inflammation, were not increased up to 21 days post dosing. Lipopolysaccharide, used as a positive control, caused large inductions of cytokine mRNA in liver, as well as an increase in IL-1beta in hippocampus, but it did not result in the induction of astrogliosis. The data suggest that enhanced expression of the proinflammatory cytokines, TNF-alpha, IL-1beta and IL-6, is not required for neuronal and glial responses to injury and that MCP-1 may serve a signaling function in the damaged CNS that is distinct from its role in proinflammatory events.
-
Protein kinase C isoforms including the alpha isozyme have been implicated in morphine tolerance. In the present study, we examined the effect of intrathecal delivery of an antisense oligonucleotide targeting rat protein kinase Calpha mRNA on the expression of spinal protein kinase Calpha isozyme and spinal morphine tolerance. Continuous intrathecal infusion of rats with morphine produced an increase in paw withdrawal threshold to thermal stimulation on day 1, which disappeared by day 5. ⋯ The antisense also attenuated protein kinase C-mediated phosphorylation in spinal cord. These results demonstrate that selective reduction in the expression of the spinal protein kinase Calpha isozyme followed by a decrease of local protein kinase C-mediated phosphorylation will reverse spinal morphine infusion-induced tolerance. This finding is consistent with the view that tolerance produced by morphine infusion is dependent upon an increase in phosphorylation by protein kinase C, and also it emphasizes that the protein kinase Calpha isozyme and its activation in spinal cord may specifically participate in the phenomenon of opiate tolerance.
-
The role of the dorsal columns in neuropathic behavior: evidence for plasticity and non-specificity.
Despite conflicting clinical and experimental evidence, textbook description of somatic sensations continues to follow a rigid dichotomy based on the concept that pain sensation is transmitted cephalad primarily through anterolateral pathways, while touch is mediated through the dorsal column pathway. This study provides an example of the dynamic rerouting in the transmission of the nociceptive signals following injuries to the peripheral and central processes of sensory neurons. In two rat models for mononeuropathy, the chronic constriction injury model [Bennett, G. ⋯ Furthermore, these results shade doubts on the validity of the concept of segregation of pathways involved in the transmission of neuropathic manifestations. Therefore, principles governing acute pain transmission are not necessarily applicable to chronic pain situations. The latter conditions seem to engage other available pathways to reestablish the pain signaling system.
-
Differential screening-selected gene aberrative in neuroblastoma (DAN) belongs to a novel gene family that includes the Xenopus head-inducing factor, Cerberus and the dorsalizing factor, Gremlin. It has been suggested that members of this family control diverse processes in growth, development and the cell cycle. ⋯ The amount of mRNA for DAN in dorsal root ganglion neurons and of its expressed protein in the spinal dorsal horn were both increased in inflammatory models. Together, these data suggest that the DAN protein may be a novel neuromodulator in primary nociceptive nerve fibers.
-
Mechanisms underlying neuropathic pain states are poorly understood. We have compared mechanisms mediating enhanced nociception of four established models of neuropathic pain produced by very different types of insults to the peripheral nervous system: streptozotocin-induced hyperalgesia, a model of diabetic (metabolic) peripheral neuropathy, vincristine-induced hyperalgesia, a model of chemotherapeutic agent (toxic) peripheral neuropathy, and chronic constriction injury and partial nerve ligation, models of trauma-induced painful neuropathies. All four models resulted in prolonged mechanical hyperalgesia (>30% decrease in mechanical nociceptive threshold) and allodynia (detected by 10-209-mN-intensity von Frey hairs). ⋯ None of these second messengers nor the NMDA receptor, which can contribute to peripheral sensitization of nociceptors, contributed to chronic constriction injury- and partial nerve ligation-induced hyperalgesia. In all four models the hyperalgesia was not antagonized by peripheral administration of a mu-opioid agonist. Our findings support the presence of a common abnormality in second messenger signaling in the periphery to the maintenance of two very different models of non-traumatic neuropathic pain, not shared by models of trauma-induced neuropathic pain.