Neuroscience
-
Despite an abundance of studies on mechanisms of behavioral sensitization, considerable uncertainty exists as to whether alterations in dopamine neurotransmission underlie the exacerbated behavioral effects of cocaine observed during the early stages of abstinence. One of the factors contributing to the uncertainty and controversy may be the limitations in utilized measurement techniques (mostly conventional microdialysis). The techniques of quantitative microdialysis under transient conditions and rotating disk electrode voltammetry were used to characterize basal dopamine dynamics as well as time-related changes in extracellular dopamine concentrations and dopamine uptake that occur in response to an acute drug challenge in control animals and animals with previous history of cocaine. ⋯ The magnitude of the increase in extracellular dopamine concentration was greater in cocaine-sensitized animals, while the ability of cocaine to decrease the extraction fraction was unaltered, suggesting that the increase in extracellular dopamine concentration reflects an increase in drug-evoked dopamine release. Moreover, cocaine-pretreated rats demonstrated greater depolarization-induced dopamine release and the ability of dopamine D(2) receptor agonist, quinpirole, to inhibit release was decreased in these animals. These data demonstrate that a cocaine treatment regimen resulting in behavioral sensitization is associated with a reduction in basal dopamine release, an enhancement in both cocaine and K(+)-evoked dopamine release, and a subsensitivity of dopamine D(2) autoreceptors that regulate dopamine release in the nucleus accumbens.
-
Delta-catenin (or neural plakophilin-related arm-repeat protein/neurojungin) is primarily a brain specific member of the p120(ctn) subfamily of armadillo/beta-catenin proteins that play important roles in neuronal development. Our previous studies have shown that the ectopic expression of delta-catenin induces the formation of dendrite-like extensions and that the overexpression of delta-catenin promotes dendritic branching and increases spine density. Here we demonstrate that delta-catenin displays a dendritic distribution pattern in the adult mouse brain and is co-enriched with postsynaptic density-95 (PSD-95) in the detergent insoluble postsynaptic scaffolds. ⋯ In dissociated hippocampal neurons overexpressing delta-catenin, glutamate stimulation leads to a rapid redistribution of delta-catenin that can be attenuated by 6-cyano-7-nitroquinoxaline-2,3-dione and dizocilpine, selective inhibitors of ionotropic glutamate receptors. Upon glutamate receptor activation, delta-catenin becomes down-regulated and its association with NR2A and mGluR1alpha in cultured neurons is diminished. These findings support a possible functional connection between delta-catenin and the glutamatergic excitatory synaptic signaling pathway during neuronal development.
-
Involvement of both the serotonergic and the endogenous opioid systems in the onset of depressive behavior has been suggested. Previously we showed that serotonin (5-hydroxytryptamine) facilitates beta-endorphin release in the nucleus accumbens (NAcc). Herein, the microdialysis method was used to assess in vivo the effects of serotonin on beta-endorphin release in a rat model of depressive behavior (the Flinders sensitive line, FSL), before and after antidepressant treatment. ⋯ Chronic treatment (18 days) with desipramine or paroxetine did not significantly affect the extracellular levels of beta-endorphin in the NAcc of either the FSL or control rats. However, the chronic antidepressant treatment did normalize the serotonin-induced release of beta-endorphin in FSL rats, as well as their behavioral manifestation of depressive behavior. Our results show that depressive behavior may relate to an impaired effect of serotonin on beta-endorphin release in the NAcc in a rat model of depression, and suggest a possible new mode of action of antidepressant drugs.
-
Axonal injury to CNS neurons results in apoptotic cell death. The processes by which axotomy signals apoptosis are diverse, and may include deprivation of target-derived factors, induction of injury factors, bursts of reactive oxygen species (ROS), and other mechanisms. Our previous studies demonstrated that death of a dissociated retinal ganglion cell, an identified CNS neuron, is ROS-dependent. ⋯ Culture of retinal ganglion cell with the non-thiol-containing reducing agent tris(carboxyethyl)phosphine resulted in long-term survival equivalent to or better than with neurotrophic factors. Our data suggest that axotomy-associated neuronal death induced by acute dissociation may be partly dependent on ROS production, acting to shift the redox state and oxidize one or more key thiols. Understanding the mechanisms by which ROS signal neuronal death could result in strategies for increasing their long-term survival after axonal injury.
-
The present study analyzed using immunohistochemical labeling the distribution and co-localization of nitric oxide synthase (NOS), cocaine- and amphetamine-regulated transcript peptide (CARTp) and pituitary adenylate cyclase activating polypeptide (PACAP) with choline acetyltransferase (ChAT)-immunoreactive fibers in the guinea-pig stellate ganglia. ChAT-immunoreactive fibers make pericellular baskets around virtually all stellate ganglia neurons. ⋯ No evidence of co-localization of NOS, PACAP and CARTp was obtained. These results indicate that NOS, PACAP and CARTp are present in distinct preganglionic axons innervating the guinea-pig stellate ganglia.