Neuroscience
-
Despite an abundance of studies on mechanisms of behavioral sensitization, considerable uncertainty exists as to whether alterations in dopamine neurotransmission underlie the exacerbated behavioral effects of cocaine observed during the early stages of abstinence. One of the factors contributing to the uncertainty and controversy may be the limitations in utilized measurement techniques (mostly conventional microdialysis). The techniques of quantitative microdialysis under transient conditions and rotating disk electrode voltammetry were used to characterize basal dopamine dynamics as well as time-related changes in extracellular dopamine concentrations and dopamine uptake that occur in response to an acute drug challenge in control animals and animals with previous history of cocaine. ⋯ The magnitude of the increase in extracellular dopamine concentration was greater in cocaine-sensitized animals, while the ability of cocaine to decrease the extraction fraction was unaltered, suggesting that the increase in extracellular dopamine concentration reflects an increase in drug-evoked dopamine release. Moreover, cocaine-pretreated rats demonstrated greater depolarization-induced dopamine release and the ability of dopamine D(2) receptor agonist, quinpirole, to inhibit release was decreased in these animals. These data demonstrate that a cocaine treatment regimen resulting in behavioral sensitization is associated with a reduction in basal dopamine release, an enhancement in both cocaine and K(+)-evoked dopamine release, and a subsensitivity of dopamine D(2) autoreceptors that regulate dopamine release in the nucleus accumbens.
-
Corticotropin-releasing hormone plays an important role in the coordination of various responses to stress. Previous research has implicated both corticotropin-releasing hormone and the serotonergic system as causative factors in the development and course of stress-related psychiatric disorders such as major depression. To delineate the role of the corticotropin-releasing hormone receptor type 1 (CRH-R1) in the interactions between corticotropin-releasing hormone and serotonergic neurotransmission, in vivo microdialysis was performed in CRH-R1-deficient mice under basal (home cage) and stress (forced swimming) conditions. ⋯ Homozygous and heterozygous mutant mice showed, however, a significantly amplified serotonin response to the forced swimming as compared to wild-type control animals. We conclude that CRH-R1-deficiency results in reduced hypothalamic-pituitary-adrenocortical axis activity, in enhanced synthesis of serotonin during basal conditions, and in an augmented response in extracellular levels of serotonin to stress. These data provide further evidence for the intricate relationship between corticotropin-releasing hormone and serotonin and the important role of the CRH-R1 herein.
-
We hypothesize that a single exposure to an LD(50) dose of sarin induces widespread early neuropathological changes in the adult brain. In this study, we evaluated the early changes in the adult brain after a single exposure to different doses of sarin. Adult male rats were exposed to sarin by a single intramuscular injection at doses of 1, 0.5, 0.1 and 0.01 x LD(50). ⋯ However, m2 mAChR ligand binding in the brainstem was increased after exposure to all doses of the sarin. Collectively, the above results indicate that, the early brain damage after acute exposure to sarin is clearly dose-dependent, and that exposure to 1 x LD(50) sarin induces detrimental changes in many regions of the adult rat brain as early as 24 hours after the exposure. The early neuropathological changes observed after a single dose of 1 x LD(50) sarin could lead to a profound long-term neurodegenerative changes in many regions of the brain, and resulting behavioral abnormalities.
-
In the present study we have investigated the possible role of gap junctions in the induction and manifestation of 4-aminopyridine-induced acute seizure activity both at the primary focus and at the mirror focus in anaesthetized rats by combining electrophysiological, pharmacological and molecular biological techniques. In the course of the intracellular recordings, unusual firing patterns that are assumed to be mediated by electrical coupling and appearing either randomly or in close time-locked manner with the ictal discharges were observed. In another series of experiments, a significant decrease in the intensity of seizure activity of the already active epileptic foci was detected when electrical synaptic transmission was blocked by carbenoxolone either at the primary focus or at the mirror focus. ⋯ Both, connexin-32 and connexin-43 mRNA levels were significantly elevated at the primary focus as well as at the mirror focus, after 60 min of repeated ictal discharges. We conclude that gap junction communication probably became a part of the neuronal synchronization both in the primary and in the secondarily-induced acute epileptiform activity in the neocortex in vivo. These results, together with earlier observations, indicate a direction for the development of new drugs targeting gap junctions for therapeutic intervention.
-
Although skeletal pain plays a major role in reducing the quality of life in patients suffering from osteoarthritis, Paget's disease, sickle cell anemia and bone cancer, little is known about the mechanisms that generate and maintain this pain. To define the peripheral fibers involved in transmitting and modulating skeletal pain, we used immunohistochemistry with antigen retrieval, confocal microscopy and three-dimensional image reconstruction of the bone to examine the sensory and sympathetic innervation of mineralized bone, bone marrow and periosteum of the normal mouse femur. Thinly myelinated and unmyelinated peptidergic sensory fibers were labeled with antibodies raised against calcitonin gene-related peptide (CGRP) and the unmyelinated, non-peptidergic sensory fibers were labeled with the isolectin B4 (Bandeira simplicifolia). ⋯ CGRP, RT-97, and tyrosine hydroxylase immunoreactive fibers, but not isolectin B4 positive fibers, were present throughout the bone marrow, mineralized bone and the periosteum. While the periosteum is the most densely innervated tissue, when the total volume of each tissue is considered, the bone marrow receives the greatest total number of sensory and sympathetic fibers followed by mineralized bone and then periosteum. Understanding the sensory and sympathetic innervation of bone should provide a better understanding of the mechanisms that drive bone pain and aid in developing therapeutic strategies for treating skeletal pain.