Neuroscience
-
Comparative Study
The influence of chemical sympathectomy on pain responsivity and alpha 2-adrenergic antinociception in neuropathic animals.
We studied the effect of chemical sympathectomy by 6-hydroxydopamine (6-OHDA) on pain behavior and alpha(2)-adrenergic antinociception in rats with a spinal nerve ligation-induced neuropathy. For assessment of alpha(2)-adrenergic antinociception, the rats were treated systemically with two alpha(2)-adrenoceptor agonists, one of which only poorly (MPV-2426) and the other very well (dexmedetomidine) penetrates the blood-brain barrier. Moreover, the effect of MPV-2426 on spontaneous activity of dorsal root nerve fibers proximal to the nerve injury was determined. ⋯ MPV-2426-induced modulation of spontaneous activity was not a general property of dorsal root fibers proximal to the injury. The results indicate that a chemical destruction of sympathetic postganglionic nerve fibers innervating the skin does not markedly influence cutaneous pain sensitivity nor is it critical for the alpha(2)-adrenoceptor agonist-induced attenuation of pain behavior in neuropathic or non-neuropathic animals. Chemical sympathectomy, independent of neuropathy, enhanced the pain attenuating effect by MPV-2426, probably due to a peripheral action, whereas in non-sympathectomized control and neuropathic animals peripheral mechanisms have only a minor, if any, role in the alpha(2)-adrenoceptor agonist-induced antinociception.
-
Caspases are proteases involved in various physiological and pathological processes in the nervous system, including development and pathogenesis. GRASP-1 is a recently identified neuronal substrate of caspase-3-subfamily caspases. It is a Ras-guanine nucleotide exchange factor (RasGEF) that interacts with the glutamate receptor interacting protein (GRIP). ⋯ We found that caspase cleavage of GRASP-1 occurs in specific brain regions in a time-dependent manner during development and ischemia. This data provides an important account of the brain areas that might require caspase-3 activity in postnatal development and ischemic damage, which has not been documented. It also demonstrates that the CGP antibody is a powerful tool for studying neuronal activity of the caspase-3-subfamily caspases in vivo.
-
Immobilization stress rapidly modulates BDNF mRNA expression in the hypothalamus of adult male rats.
We demonstrated that short times (15 min) of immobilization stress application induced a very rapid increase in brain-derived neurotrophic factor (BDNF) mRNA expression in rat hypothalamus followed by a BDNF protein increase. The early change in total BDNF mRNA level seems to reflect increased expression of the BDNF transcript containing exon III, which was also rapidly (15 min) modified. The paraventricular and supraoptic nuclei, two hypothalamic nuclei closely related to the stress response and known to express BDNF mRNA, were analyzed by in situ hybridization following immobilization stress. ⋯ In contrast, in the two other regions examined, the lateral and ventral magnocellular regions of the paraventricular nucleus, as well as in the supraoptic nucleus, signals above control were increased later, at 60 min. After stress application, plasma adrenocorticotropic hormone and corticosterone levels were strongly and significantly increased at 15 min. These studies demonstrated that immobilization stress challenge very rapidly enhanced BDNF mRNA levels as well as the protein, suggesting that BDNF may play a role in plasticity processes related to the stress response.
-
There is a large body of data on the firing properties of dopamine cells in anaesthetised rats or rat brain slices. However, the extent to which these data relate to more natural conditions is uncertain, as there is little quantitative information available on the firing properties of these cells in freely moving rats. We examined this by recording from the midbrain dopamine cell fields using chronically implanted microwire electrodes. (1) In most cases, slowly firing cells with broad action potentials were profoundly inhibited by the dopamine agonist apomorphine, consistent with previously accepted criteria. ⋯ The distribution of burst incidence was similar to that previously reported with chloral hydrate anaesthesia, but the average intraburst frequency was higher in the conscious animal at rest and was higher again in bursts triggered by salient stimuli. (3) There was no evidence for spike frequency adaptation within bursts on average, consistent with the hypothesis that afterhyperpolarisation currents may be disabled during behaviourally induced bursting. (4) Presumed dopamine cells responded to reward-related stimuli with increased bursting rates and significantly higher intraburst frequencies compared to bursts emitted outside task context, indicating that modulation of afferent activity might not only trigger bursting, but may also regulate burst intensity. (5) In addition to the irregular single spike and bursting modes we found that extremely regular (clock-like) firing, previously only described for dopamine cells in reduced preparations, can also be expressed in the freely moving animal. (6) Cross-correlation analysis of activity recorded from simultaneously recorded neurones revealed coordinated activity in a quarter of dopamine cell pairs consistent with at least "functional" connectivity. On the other hand, most dopamine cell pairs showed no correlation, leaving open the possibility of functional sub-groupings within the dopamine cell fields. Taken together, the data suggest that the basic firing modes described for dopamine cells in reduced or anaesthetised preparations do reflect natural patterns of activity for these neurones, but also that the details of this activity are dependent upon modulation of afferent inputs by behavioural stimuli.
-
Interleukin-6 (IL-6) is a multifunctional cytokine that may have a role in energy regulation. Using a recombinant adeno-associated viral vector expressing murine interleukin-6 (rAAV-IL-6), we examined the chronic effects of centrally expressed IL-6 on food intake, body weight and adiposity in male Sprague-Dawley rats, and investigated the underlying mechanisms. Direct delivery of rAAV-IL-6 into rat hypothalamus suppressed weight gain and visceral adiposity without affecting food intake over a 5-week period. rAAV-IL-6 enhanced uncoupling protein 1 (UCP1) protein levels in interscapular brown adipose tissue (BAT). ⋯ These data demonstrate that chronic elevation of IL-6 in the CNS reduces body weight gain and visceral adiposity without affecting food intake. The mechanism involves sympathetic induction of UCP1 in BAT and, presumably, enhanced thermogenesis in BAT. Furthermore, chronic central IL-6 stimulation desensitizes IL-6 signal transduction characterized by reversal of elevated P-STAT3 levels.