Neuroscience
-
The Edinger-Westphal nucleus is the primary source of urocortin in rodent brain. Mapping of inducible transcription factors has shown that the Edinger-Westphal nucleus is preferentially sensitive to ethanol self-administration. In the present study we have immunohistochemically compared expression of urocortin and c-Fos in naive and ethanol-treated C57BL/6J and DBA/2J mouse inbred strains. ⋯ Behavioral analysis of the B6D2 F2 intercross, a heterogeneous mouse strain, showed that the number of urocortin cells is positively correlated with basal temperatures and ethanol-induced hypothermia. Involvement of the Edinger-Westphal in alcohol-induced hypothermia is further confirmed by analysis of urocortin cells in the HOT/COLD selected lines. These results provide evidence that C57BL/6J and DBA/2J mice have structural differences in the Edinger-Westphal that can result in activation of different populations of neurons upon alcohol intoxication contributing to differential thermoregulation between these inbred strains.
-
Dopaminergic projections to the forebrain arising from the mesencephalic ventral tegmentum modulate information processing in cortical and limbic sites. The lateral hypothalamus is crucial for the coordination of behavioral responses to interoceptive cues. The presence of a hypothalamic input to the ventral tegmental area has been known for some time, but the organization of this pathway has received little attention. ⋯ Moreover, axons that were anterogradely labeled from the lateral hypothalamus were seen throughout the ventral tegmental area, and were often in close proximity to the dendrites and somata of dopamine neurons. Dopamine and orexin fibers were found to codistribute in the medial prefrontal cortex; orexin fibers were present in lower density in the medial shell of the nucleus accumbens, and the central and posterior basolateral nuclei of the amygdala. We conclude that the lateral hypothalamic/perifornical projection represents an anatomical substrate by which interoceptive-related signals may influence forebrain dopamine function.
-
The brain noradrenergic system is activated by stress, modulating the activity of forebrain regions involved in behavioral and neuroendocrine responses to stress. In this study, we characterized brain noradrenergic reactivity to acute immobilization stress in three rat strains that differ in their neuroendocrine stress response: the inbred Lewis (Lew) and Wistar-Kyoto (WKY) rats, and outbred Sprague-Dawley (SD) rats. Noradrenergic reactivity was assessed by measuring tyrosine hydroxylase mRNA expression in locus coeruleus, and norepinephrine release in the lateral bed nucleus of the stria terminalis. ⋯ Acute noradrenergic reactivity to stress, measured by either tyrosine hydroxylase mRNA levels or norepinephrine release, was also attenuated in WKY rats. Thus, reduced arousal and behavioral responsivity in WKY rats may be related to deficient brain noradrenergic reactivity. This deficit may alter their ability to cope with stress, resulting in the exaggerated neuroendocrine responses and increased susceptibility to stress-related pathology exhibited by this strain.
-
White matter strips extracted from adult guinea-pig spinal cords were maintained in vitro and studied physiologically using a double sucrose gap technique and anatomically using a horseradish peroxidase assay. The amplitude of compound action potentials was monitored continuously before, during, and after elongation. Three types of conduction blocks resulting from stretch injury were identified: an immediate, spontaneously reversible component, which may result from a transient increase in membrane permeability and consequent disturbance of ionic distribution; a second component that was irreversible within 30-60 min of recording, perhaps resulting from profound axolemmal disruption; and a third component, which may be due to perturbation of the myelin sheath, that was reversible with application of 100 microM of the potassium channel blocker, 4-aminopyridine. ⋯ Further, in the entire length of the cord strip subjected to stretch, axons closer to the surface were found to be more likely to suffer membrane damage, which distinguished stretch injury from compression injury. In summary, we have developed an in vitro model of axonal stretch that provides the ability to monitor changes in the properties of central myelinated axons following stretch injury in the absence of pathological variables related to vascular damage. This initial investigation found no evidence of secondary deterioration of axons in the first 30 min after stretch in vitro, although there was evidence of both transient and lasting physiological and anatomical damage to axons and their myelin sheaths.
-
There is a large body of data on the firing properties of dopamine cells in anaesthetised rats or rat brain slices. However, the extent to which these data relate to more natural conditions is uncertain, as there is little quantitative information available on the firing properties of these cells in freely moving rats. We examined this by recording from the midbrain dopamine cell fields using chronically implanted microwire electrodes. (1) In most cases, slowly firing cells with broad action potentials were profoundly inhibited by the dopamine agonist apomorphine, consistent with previously accepted criteria. ⋯ The distribution of burst incidence was similar to that previously reported with chloral hydrate anaesthesia, but the average intraburst frequency was higher in the conscious animal at rest and was higher again in bursts triggered by salient stimuli. (3) There was no evidence for spike frequency adaptation within bursts on average, consistent with the hypothesis that afterhyperpolarisation currents may be disabled during behaviourally induced bursting. (4) Presumed dopamine cells responded to reward-related stimuli with increased bursting rates and significantly higher intraburst frequencies compared to bursts emitted outside task context, indicating that modulation of afferent activity might not only trigger bursting, but may also regulate burst intensity. (5) In addition to the irregular single spike and bursting modes we found that extremely regular (clock-like) firing, previously only described for dopamine cells in reduced preparations, can also be expressed in the freely moving animal. (6) Cross-correlation analysis of activity recorded from simultaneously recorded neurones revealed coordinated activity in a quarter of dopamine cell pairs consistent with at least "functional" connectivity. On the other hand, most dopamine cell pairs showed no correlation, leaving open the possibility of functional sub-groupings within the dopamine cell fields. Taken together, the data suggest that the basic firing modes described for dopamine cells in reduced or anaesthetised preparations do reflect natural patterns of activity for these neurones, but also that the details of this activity are dependent upon modulation of afferent inputs by behavioural stimuli.