Neuroscience
-
Comparative Study
Neuregulin-1beta modulates in vivo entorhinal-hippocampal synaptic transmission in adult rats.
Neuregulin-1 (NRG-1) proteins and their erbB receptors are essential for neuronal development during embryogenesis and may contribute importantly to neuronal function in the adult brain. This study tests the hypothesis that NRG-1beta acts as a modulator of synaptic activity in the adult brain, specifically at hippocampal formation synapses. Adult, male Sprague-Dawley rats were anesthetized and a recording electrode with an attached stainless steel microinjector was stereotaxically positioned to record field potentials (fEPSP) in either the dentate gyrus or the cornu ammonis (CA) 1 field of the hippocampus. ⋯ In contrast to its effect at the entorhinal-dentate synapse, NRG-1beta (100 nM) depressed, and PD158780 potentiated entorhinal-CA1 synaptic transmission. Thus, in adult rats NRG-1beta potentiates transmission at the entorhinal-dentate synapse but suppresses transmission at the entorhinal-CA1 synapse. These observations indicate that NRG-1 is not only a developmental growth factor, but also modifies synaptic transmission in adult rat brain.
-
Comparative Study
Brain afferents to the lateral caudal ventrolateral medulla: a retrograde and anterograde tracing study in the rat.
The ventrolateral medulla (VLM) modulates autonomic functions, motor reactions and pain responses. The lateralmost part of the caudal VLM (VLMlat) was recently shown to be the VLM area responsible for pain modulation. In the present study, the brain sources of VLMlat afferent fibers were determined by tract-tracing techniques. ⋯ The present study gives an account of the brain regions putatively involved in triggering the modulatory actions elicited from the VLMlat. These include areas committed to somatosensory processing, autonomic control, somatic and visceral motor activity and affective reactions. The findings suggest that the VLMlat may play a major homeostatic role in the integration of nociception with other brain functions.
-
Comparative Study
Expression of auxiliary beta subunits of sodium channels in primary afferent neurons and the effect of nerve injury.
Multiple voltage-gated sodium channels are the primary mediators of cell excitability. They are multimers that consist of the pore-forming alpha subunit and auxiliary beta subunits. Although ion permeability and voltage sensing are primarily determined by the alpha subunit, beta subunits are important modulators of sodium channel function. ⋯ We also examined the expression of beta(3) mRNA in DRG neurons in the SNI model, a neuropathic pain model. We used activating transcription factor 3 to identify axotomized neurons, and found that beta(3) mRNA up-regulation occurred mainly in axotomized neurons in the neuropathic pain model. These data strongly suggest that beta(3) expression in injured DRG neurons following axotomy might be an important pathomechanism of post-nerve injury pain in primary sensory neurons.
-
Sleep deprivation exerts antidepressant effects after only one night of deprivation, demonstrating that a rapid antidepressant response is possible. In this report we tested the hypothesis that total sleep deprivation induces an increase in extracellular serotonin (5-HT) levels in the hippocampus, a structure that has been proposed repeatedly to play a role in the pathophysiology of depression. Sleep deprivation was performed using the disk-over-water method. ⋯ During an additional sleep recovery day, 5-HT remained elevated even though rats displayed normal amounts of sleep. Stimulus control rats, which had been allowed to sleep, did not experience a significant increased in 5-HT levels, though they were exposed to a stressful situation similar to slee-deprived rats. These results are consistent with a role of 5-HT in the antidepressant effects of sleep deprivation.
-
Comparative Study
Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain.
Previous studies have documented changes in expression of the immediate early gene (IEG) c-fos and Fos protein in the brain between sleep and wakefulness. Such expression differences implicate changes in transcriptional regulation across behavioral states and suggest that other transcription factors may also be affected. In the current study, we examined the expression of seven fos/jun family member mRNAs (c-fos, fosB, fos related antigen (fra)1, fra-2, junB, c-jun, and junD) and three other IEG mRNAs (egr-1, egr-3, and nur77) in mouse brain following short-term (6 h) sleep deprivation (SD) and 4 h recovery sleep (RS) after SD. ⋯ Among other IEGs, nur77 mRNA expression across conditions was similar to c-fos and fosB, egr-1 mRNA was elevated during SD in the cortex and basal forebrain, and egr-3 mRNA was elevated in the cortex during both SD and RS. The similarity of fosB and nur77 expression to c-fos expression indicates that these genes might also be useful markers of functional activity. Along with our previous results, the increased levels of fra-2 and egr-3 mRNAs during RS reported here suggest that increased mRNA expression during sleep is rare and may be anatomically restricted.