Neuroscience
-
Comparative Study
Hypertension-induced changes in monoamine receptors in the prefrontal cortex of rhesus monkeys.
Hypertension affects approximately 60 million people in the United States. Recent studies have demonstrated that hypertension may produce progressive changes in the CNS. The present study is focused on reports in the literature that hypertension may significantly alter neurotransmitter systems, particularly dopamine (DA) and norepinephrine (NE). ⋯ Eight monkeys underwent surgical coarctation of the mid-thoracic aorta which produced sustained, untreated hypertension as defined by a systolic pressure above 150 mm Hg. Compared with normotensive controls, chronic, untreated hypertension produced a significant decrease in DA1 and NE alpha1 receptor binding and an increase in DA uptake (DAU) receptor binding in the prefrontal cortex. While the mechanisms by which untreated hypertension alters DA and NE receptors is not known, the use of this non-human primate model should provide the means to uncover neurobiological changes that occur with untreated hypertension.
-
Comparative Study
Frequency-dependent expression of corticotropin releasing factor in the rat's cerebellum.
Corticotropin releasing factor (CRF), localized in extrinsic afferents in the mammalian cerebellum, is defined as a neuromodulator within cerebellar circuits, and appears to be an essential element in the generation of long term depression, a proposed mechanism for motor learning. These physiological studies are based on exogenous application of CRF and do not address potential mechanisms that may influence endogenous release of the peptide. In the present study, immunohistochemistry was used to analyze changes in the lobular distribution of CRF-like immunoreactivity (LIR). ⋯ Quantitatively, the RIA studies indicate that there is a significant increase in CRF levels in the vermis, hemispheres and flocculus that correlates closely with stimulation frequency. In conclusion, stimulation of cerebellar afferents induces a significant change in the distribution and levels of CRF-LIR in climbing fibers, mossy fibers and glial cells. This suggests that the modulatory effects ascribed to CRF may influence a greater number of target neurons when levels of activity in afferent systems is increased.
-
Comparative Study
The differentiation potential of precursor cells from the mouse lateral ganglionic eminence is restricted by in vitro expansion.
We have investigated whether the differentiation potential of attached cultures derived from the mouse lateral ganglionic eminence (LGE) is influenced by in vitro expansion. Primary neuronal cultures derived from the LGE give rise to neurons expressing the striatal projection neuron markers Islet1 (ISL1) and dopamine and cAMP-regulated phosphoprotein of 32 kilodaltons (DARPP-32) as well as the olfactory bulb interneuron marker Er81. Our previous results showed that after expansion in vitro, LGE precursor cells can be induced to differentiate into neurons which exhibit molecular characteristics of the LGE, such as the homeobox transcription factors DLX and MEIS2. ⋯ This indicates that the expansion of LGE precursor cells restricts their differentiation potential in vitro. Interestingly, the undifferentiated LGE cultures retain the expression of both the Isl1 and Er81 genes, suggesting that precursor cells for both striatal projection neurons and olfactory bulb interneurons are present in these cultures. Thus the restriction in differentiation potential of the expanded LGE cultures likely reflects deficiencies in the differentiation conditions used.
-
Comparative Study
Nociceptin/orphanin FQ knockout mice display up-regulation of the opioid receptor-like 1 receptor and alterations in opioid receptor expression in the brain.
The opioid receptor-like 1 receptor is a novel member of the opioid receptor family and its endogenous peptide ligand has been termed nociceptin and orphanin FQ. Activation of the opioid receptor-like 1 receptor by nociceptin/orphanin FQ in vivo produces hyperalgesia when this peptide is given supraspinally but analgesia at the spinal level. Nociceptin/orphanin FQ also reverses stress-induced analgesia, suggesting that the peptide has anti-opioid properties. ⋯ Mu-Receptors also showed significant differences between genotypes whilst changes in delta- and kappa- receptors were minor. In conclusion the region-specific up-regulation of the opioid receptor-like 1 receptor indicates a tonic role for nociceptin/orphanin FQ in some brain structures and may suggest the peptide regulates the receptor expression in these regions. The changes in the opioid receptor-like 1 receptor may relate to the anxiogenic phenotype of these animals but the observed change in mu-receptors does not correlate with altered morphine responses.
-
Comparative Study
Neuronal activity regulates GABAA receptor subunit expression in organotypic hippocampal slice cultures.
The postnatal expression of GABA(A) receptor subunit mRNAs in the rat brain, including the hippocampus, exhibits a unique temporal and regional developmental profile in vivo, which may be altered by external stimuli. Using the in situ hybridization technique we have now studied the in vitro expression of alpha1,alpha2, alpha 4, alpha 5, beta 1, beta 3, gamma 2, and gamma 3 subunit mRNAs of GABA(A) receptors in organotypic hippocampal slices cultured for 7 days. To find out whether neuronal activity regulates the subunit expression, a subset of cultures was chronically treated either with a GABA(A) receptor antagonist picrotoxin, or by a non-N-methyl-D-aspartate (non-NMDA)-receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). ⋯ In picrotoxin-treated cultures, the expression of alpha1, alpha 5 and gamma 2 mRNAs was significantly increased in pyramidal cell layers, and in DNQX-treated cultures the expression of alpha2 mRNA in CA3c and DG, and that of beta1 in DG. Changes in the expression of GABA(A) receptor subunit mRNAs in treated cultures suggest that neuronal activity can regulate their regional expression in vitro. Since the expression profile in untreated control cultures closely resembled that observed earlier in vivo, organotypic hippocampal slice cultures could serve as a good model system to study the regulatory mechanisms of receptor expression under well-controlled experimental conditions in the developing hippocampus.