Neuroscience
-
Immunohistochemistry and confocal microscopy were used to investigate endocytosis and recycling of the native mu opioid receptor (muOR) in enteric neurons. Isolated segments of the guinea-pig ileum were exposed to increasing concentrations of muOR agonists at 4 degrees C to allow ligand binding and warming to 37 degrees C for 0 min (baseline) to 6 h in ligand-free medium to allow receptor internalization and recycling. The endogenous ligand, [Met]enkephalin, and [D-Ala(2),MePhe(4),Gly-ol(5)] enkephalin (DAMGO), an opioid analog, and the alkaloids, etorphine and fentanyl, induced rapid internalization of muOR immunoreactivity in enteric neurons, whereas morphine did not. muOR internalization was prevented by muOR antagonists. ⋯ A second exposure to DAMGO (100 nM) following recovery of internalized muOR immunoreactivity at the cell surface induced a translocation of muOR immunoreactivity in the cytoplasm comparable to the one observed following the first exposure (46.89+/-3.11% versus 43.31+/-3.80%). muOR internalization was prevented by hyperosmolar sucrose, phenylarsine oxide or potassium depletion, which inhibit clathrin-mediated endocytosis. muOR recycling was prevented by pre-treatment with bafilomycin A1, an acidotropic agent that inhibits endosomal acidification, but not by the protein synthesis inhibitor, cycloheximide. This study shows that native muOR in enteric neurons undergoes ligand-selective endocytosis, which is primarily clathrin-mediated, and recycles following endosomal acidification. Following recycling, muOR is activated and internalized by DAMGO indicating that recycled receptors are functional.
-
Comparative Study
Reduction of glycine receptor-mediated miniature inhibitory postsynaptic currents in rat spinal lamina I neurons after peripheral inflammation.
Peripheral inflammation may induce long-lasting sensitization in the central nociceptive system. Neurons in lamina I of the spinal dorsal horn play a pivotal role in the integration and relay of pain-related information. In rats we studied whether changes in passive and active membrane properties and/or alteration of glycine receptor-mediated inhibitory control of spinal lamina I neurons may contribute to central sensitization in a model of peripheral long-lasting inflammation (complete Freund's adjuvant, hindpaw). ⋯ The mean frequency of GlyR-mediated mIPSCs of lamina I neurons ipsilateral to the inflamed hindpaw was, however, significantly reduced by peripheral inflammation when compared with neurons from noninflamed animals. Principal passive and active membrane properties and firing patterns of spinal lamina I neurons were not changed by inflammation. These results indicate that long-lasting peripheral inflammation leads to a reduced glycinergic inhibitory control of spinal lamina I neurons by a presynaptic mechanism.
-
The modulation of the firing discharge of medial septal neurons and of the hippocampal electroencephalogram (EEG) mediated by actions on alpha2-adrenoreceptors (ARs) was investigated in awake rabbits. Bilateral i.c.v. infusion of a relatively low dose (0.5 microg) of the alpha2-AR agonist clonidine produced a reduction in the theta rhythmicity of both medial septal neurons and the hippocampal EEG. In contrast, a high dose of clonidine (5 microg) increased the percentage and degree of rhythmicity of theta bursting medial septal neurons as well as the theta power of the hippocampal EEG. ⋯ These results suggest that low doses of alpha2-ARs agents may act at autoreceptors regulating the synaptic release of noradrenaline, while high doses of alpha2-ARs drugs may have a predominant postsynaptic action. Similar results were observed after local injection of the alpha2-AR drugs into the medial septum suggesting that the effects induced by the i.c.v. infusion were primarily mediated at the medial septal level. We suggest that noradrenergic transmission via the postsynaptic alpha2-ARs produces fast and strong activation of the septohippocampal system in situations that require urgent selective attention to functionally significant information (alert, aware), whereas the action via the presynaptic alpha2-ARs allows a quick return of the activity to the initial level.
-
Comparative Study
Biochemical analysis of GABA(A) receptor subunits alpha 1, alpha 5, beta 1, beta 2 in the hippocampus of patients with Alzheimer's disease neuropathology.
Alzheimer's disease (AD) is characterized by selective vulnerability of specific neuronal populations within particular brain regions. For example, hippocampal glutamatergic cell populations within the CA1/subicular pyramidal cell fields have been found to be particularly vulnerable early in AD progression. In contrast, hippocampal GABA-ergic neurons and receptors appear resistant to neurodegeneration. ⋯ In particular, alpha 1, beta 1, and beta 2 displayed little difference in protein levels among pathologically mild, moderate, and severe subject groups. In contrast, although relatively modest, protein levels of the alpha 5 subunit were significantly reduced between subjects with severe neuropathology compared with pathologically mild subjects (13.5% reduction). Collectively, our data provide evidence for heterogeneous distribution and relative sparing of GABA(A) receptor subunits in the hippocampus of AD patients.
-
Comparative Study
Hydrogen peroxide increases the activity of rat sympathetic preganglionic neurons in vivo and in vitro.
Reactive oxygen species (ROS) have been shown to modulate neuronal synaptic transmission and have also been implicated in cardiovascular diseases such as hypertension. The hypothesis that H(2)O(2) acting on sympathetic preganglionic neurons (SPNs) affects spinal sympathetic outflow was tested in the present study. H(2)O(2) was applied intrathecally via an implanted cannula to the T7-T9 segments of urethane-anesthetized rats. ⋯ The pressor effects of intrathecal H(2)O(2) (1000 nmol) were also antagonized dose-dependently by prior intrathecal injection of AP-5 (DL-2-amino-5- phosphonovaleric acid, 10 and 30 nmol), or 6-cyano-7- nitroquinoxaline-2,3-dione, 10 and 30 nmol. In vitro electrophysiological study in spinal cord slices showed that superfusion of 1 mM H(2)O(2) for 3 min, which had no effect on membrane potential, caused an increase in amplitude of excitatory postsynaptic potentials in SPNs, but had little effect on that of inhibitory postsynaptic potentials. Taken together, these results demonstrated that oxidative stress in spinal cord may cause an increase in spinal sympathetic tone by acting on SPNs, which may contribute to ROS-induced cardiovascular dysfunction.