Neuroscience
-
Glial cell line-derived neurotrophic factor (GDNF) signals through multisubunit receptor complex consisting of RET tyrosine kinase and a glycosylphosphatidylinositol-anchored coreceptor called GDNF family receptor alpha1 (GFRalpha1). In the current study, we cloned a human SEP1 gene as a GDNF-inducible gene using human neuroblastoma cells that express RET and GFRalpha1. The induction of the SEP1 gene showed two peaks at 0.5-2 h and 24-48 h after GDNF stimulation by Northern blotting and quantitative real-time reverse transcriptase polymerase chain reaction. ⋯ In addition, we found a high level of SEP1 expression in neurons of the dorsal root and superior cervical ganglia and motor neurons of the spinal cord of mice in which RET is also expressed. SEP1 was co-immunoprecipitated with alpha- and beta-tubulins from the lysate of mouse brain. These results thus suggested that SEP1 is a GDNF-inducible and microtubule-associated protein that may play a role in the nervous system.
-
Comparative Study
Molecular and behavioral analysis of the R6/1 Huntington's disease transgenic mouse.
Transgenic mice expressing exon 1 of the human Huntington's disease (HD) gene carrying a 115 CAG repeat (line R6/1) are characterized by a neurologic phenotype involving molecular, behavioral and motor disturbances. We have characterized the R6/1 to establish a set of biomarkers, which could be semi-quantitatively compared. We have measured motor fore- and hindlimb coordination, fore- and hindpaw footprinting, general activity and anxiety, feetclasping, developmental instability. ⋯ Mice tested at 23 and 24 weeks of age showed significant impairments in open field and plus-maze analysis respectively. We observed no significant abnormalities in stride length of the R6/1 mouse model. As the analyzed parameters are easily detected and measured, the R6/1 mouse appears to be a good model for evaluating new drugs or types of therapy for HD.
-
Comparative Study
Effects of testosterone on hippocampal CA1 spine synaptic density in the male rat are inhibited by fimbria/fornix transection.
This study investigated the contribution of sub-cortical afferent input to the effects of testosterone (T) on spine synapse density in the CA1 subfield of the hippocampus, in adult male rats. Gonadectomized (GDX) male rats exhibited a considerably lower density of spine synapses in the CA1 region than control, intact males. ⋯ However, FF transection partially inhibited the responses to TP in GDX animals. These data suggest that the effects of T on spine synapse density in the CA1 region of the male rat hippocampus are partially, but not completely, dependent on afferent sub-cortical input.
-
Comparative Study
A role for c-Jun N-terminal kinase in the inhibition of long-term potentiation by interleukin-1beta and long-term depression in the rat dentate gyrus in vitro.
Recent evidence has emphasised the importance of mitogen-activated protein kinase activation in the modulation of hippocampal synaptic plasticity. Whilst extracellular-regulated kinase activation is now regarded as a critical step in the induction of long-term potentiation (LTP), activation of p38 and c-Jun N-terminal kinase (JNK) is associated with its inhibition. Here, the effects of the novel JNK inhibitor anthra[1,9-cd]pyrazol-6(2H)-1 (SP600125) were investigated on the inhibition of LTP by cytokines interleukin-1beta, interleukin-18 and tumour necrosis factor-alpha in the dentate gyrus. ⋯ Perfusion of SP600125 prior to low-frequency stimulation of the perforant path resulted in a significant attenuation of induced LTD, which suggests that JNK activation is a critical mediator of LTD in the dentate gyrus. These results directly implicate, for the first time, differential activation of JNK in the modulation of distinct forms of hippocampal synaptic plasticity. Whereas acute over-activation of JNK by pathophysiological concentrations of cytokines is detrimental to LTP, physiologic activation of JNK appears necessary for the induction of LTD.
-
Comparative Study
Vestibulo-oculomotor behaviour in rats following a transient unilateral vestibular loss induced by lidocaine.
The effects of a transient vestibular nerve blockade, achieved by intra-tympanic instillation of lidocaine, were studied in rats by recording horizontal eye movements in darkness. Evaluation of the dose-response relationship showed that a maximal effect was attained with a concentration of 4% lidocaine. Within 15 min of lidocaine instillation, a vigorous spontaneous nystagmus was observed which reached maximal frequency and velocity of the slow phase after about 20 min. ⋯ The same effect has previously been demonstrated in both short- (days) and long-term (months) compensated rats, by antagonising the GABA(B) receptor. In summary, this study provides the first observations of vestibulo-oculomotor disturbances during the first hour after a rapid and transient unilateral vestibular loss in the rat. By using this method, it is possible to study immediate behavioural consequences and possible neural changes that might outlast the nerve blockade.