Neuroscience
-
Comparative Study
Sox1-deficient mice suffer from epilepsy associated with abnormal ventral forebrain development and olfactory cortex hyperexcitability.
Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice. ⋯ Furthermore, the hyperexcitability of the OC neurons was present in mutants prior to the onset of seizures but was completely absent from both the hippocampus and neocortex of the same animals. The local inhibitory GABAergic neurotransmission remained normal in the OC of SOX1-deficient brains, but there was a severe developmental deficit of OC postsynaptic target neurons, mainly GABAergic projection neurons within the olfactory tubercle and the nucleus accumbens shell. Our data show that SOX1 is essential for ventral telencephalic development and suggest that the neurodevelopmental defect disrupts local neuronal circuits leading to epilepsy in the SOX1-deficient mice.
-
Comparative Study
Attenuation of neuropathic manifestations by local block of the activities of the ventrolateral orbito-frontal area in the rat.
Clinical and recent imaging reports demonstrate the involvement of various cerebral prefrontal areas in the processing of pain. This has received further confirmation from animal experimentation showing an alteration of the threshold of acute nociceptive reflexes by various manipulations in the orbito-frontal cortical areas. The present study investigates the possible involvement of this area in the modulation of neuropathic manifestations in awake rats. ⋯ Our results correlate well with the established connections of the ventrolateral orbital area with the thalamic nucleus subnucleus involved in the procession of thermal nociception. The transient effects reported following permanent lesions in the orbital areas may reflect its flexible role in pain modulation. This observation provides further evidence on the plasticity of the neural networks involved in the regulation of nociceptive behavior.
-
Painful peripheral neuropathy is a major dose-limiting adverse effect of many cancer chemotherapeutic agents, such as the vinca alkaloids and taxanes. Recent studies demonstrate sexual dimorphism in second-messenger signaling for primary afferent nociceptor sensitization, and a role of second messengers in the models of metabolic and toxic painful peripheral neuropathies. This study tested the hypothesis that sexual dimorphism alters the severity and second-messenger signaling pathways for enhanced nociception in an animal model of vincristine-induced painful peripheral neuropathy. ⋯ Inhibition of protein kinase C epsilon (PKC epsilon ) attenuated vincristine-induced hyperalgesia in males and ovariectomized females, but not in normal females or in estrogen-replaced ovariectomized females. Inhibitors of protein kinase A, protein kinase G, p42 / p44-mitogen activated protein kinase and nitric oxide synthase also attenuated vincristine-induced hyperalgesia, but to a similar degree in both sexes. These data demonstrate an estrogen-dependent sexual dimorphism in vincristine-induced hyperalgesia (female>male) and an unexpected opposite sexual dimorphism in the contribution of PKC epsilon to the severity of this hyperalgesia (male>female).
-
P2X receptors are non-selective cation channels gated by extracellular ATP and are encoded by a family of seven subunit genes in mammals. These receptors exhibit high permeabilities to calcium and in the mammalian nervous system they have been linked to modulation of neurotransmitter release. Previously, three complementary DNAs (cDNAs) encoding members of the zebrafish gene family have been described. ⋯ Analysis of gene expression patterns was carried out using in situ hybridization, and seven of the nine genes were found to be expressed in embryos at 24 and 48 h post-fertilization. Of the seven that were expressed, six were present in the nervous system and four of these demonstrated considerable overlap in cells present in the sensory nervous system. These results suggest that P2X receptors might play a role in the early development and/or function of the sensory nervous system in vertebrates.
-
The viral transneuronal labeling method was used to demonstrate that orexin-containing neurons of the lateral hypothalamic area (LHA) are linked via multisynaptic connections to different sympathetic outflow systems. Two different types of transneuronal tracing experiments were performed: single- and double-virus studies. In the first series of experiments, Bartha pseudorabies virus (PRV), a retrograde transneuronal tracer, was injected into single sympathetic targets, viz., stellate ganglion, adrenal gland, celiac ganglion, and kidney. ⋯ The reverse placement of viral injections was made in another set of rats. In both paradigms, some orexin LHA neurons were transneuronally labeled with both viruses, indicating that they are capable of modulating multiple sympathetic outflow systems. These findings raise the possibility that orexin LHA neurons regulate general sympathetic functions, such as those that occur during arousal or the fight-or-flight response.