Neuroscience
-
Cell surface glycoconjugates are thought to mediate cell-cell recognition and play roles in neuronal development and functions. We demonstrated here that exposure of neuronal cells to nanomolar levels of gangliosides Neu5Acalpha 8Neu5Acalpha 3Galbeta 4GlcCer, Galbeta 3GalNAcbeta 4(Neu5Acalpha 8Neu5Acalpha 3)Galbeta 4GlcCer (GD1b), Neu5Acalpha 3Galbeta 3GalNAcbeta 4(Neu5Acalpha 8Neu5Acalpha 3)Galbeta 4GlcCer (GT1b) or its oligosaccharide portion induced a rapid and transient activation of Ca2+/calmodulin-dependent protein kinase II (CaM-KII) in the subplasmalemma. Galbeta 3GalNAcbeta 4(Neu5Acalpha 3)Galbeta 4GlcCer (GM1), GalNAcbeta 4(Neu5Acalpha 3)Galbeta 4GlcCer, Neu5Acalpha 3Galbeta 4GlcCer, Neu5Acalpha 3Galbeta 3GalNAcbeta 4(Neu5Acalpha 3)Galbeta 4GlcCer (GD1a), and Neu5Acalpha 8Neu5Acalpha 3Galbeta 3GalNAcbeta 4(Neu5Acalpha 8Neu5Acalpha 3)-Galbeta 4GlcCer were ineffective. ⋯ The filopodia formation induced by the gangliosides may have a physiological relevance because long-term exposure of hippocampal neurons to GT1b oligosaccharide induced advanced dendritogenesis. Furthermore, exposure of cerebellar neurons to GT1b oligosaccharide facilitated CaM-KII-dependent dendritic outgrowth and branch formation of cerebellar Purkinje neurons, in which actin isoforms were localized to motile structures in dendrites. Thus, the ganglioside/CaM-KII signal plays a role in modulating dendritic morphogenesis by inducing cdc42-mediated actin reorganization.
-
Comparative Study
Modulation of electrically evoked acetylcholine release through cannabinoid CB1 receptors: evidence for an endocannabinoid tone in the human neocortex.
Cannabinoids are known to inhibit neurotransmitter release in the CNS through CB1 receptors. The present study compares the effects of synthetic cannabinoids on acetylcholine (ACh) release in human and mice neocortex. We further investigated a possible endocannabinoid tone on CB1 receptors in human neocortex caused by endogenous agonists like anandamide or 2-arachidonylglycerol. ⋯ The results show that activation of CB1 cannabinoid receptors leads to inhibition of ACh release in the human and mouse neocortex. The endocannabinoid tone is high in the human, but not in the mouse neocortex and is dependent on neuronal activity. SR141716 acts as a competitive CB1 receptor antagonist.
-
Comparative Study
Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity.
In vivo, in vitro and computational studies were used to investigate the impact of the synaptic background activity observed in neocortical neurons in vivo. We simulated background activity in vitro using two stochastic Ornstein-Uhlenbeck processes describing glutamatergic and GABAergic synaptic conductances, which were injected into a cell in real time using the dynamic clamp technique. With parameters chosen to mimic in vivo conditions, layer 5 rat prefrontal cortex cells recorded in vitro were depolarized by about 15 mV, their membrane fluctuated with a S. ⋯ Background activity was highly effective in modulating the firing-rate/current curve of the cell: the variance of the simulated gamma-aminobutyric acid (GABA) and AMPA conductances individually set the input/output gain, the mean excitatory and inhibitory conductances set the working point, and the mean inhibitory conductance controlled the input resistance. An average ratio of inhibitory to excitatory mean conductances close to 4 was optimal in generating membrane potential fluctuations with high coefficients of variation. We conclude that background synaptic activity can dynamically modulate the input/output properties of individual neocortical neurons in vivo.
-
Comparative Study
Serotonergic serotonin (1A) mixed agonists/antagonists elicit large-magnitude phase shifts in hamster circadian wheel-running rhythms.
The biological clock that generates circadian rhythms in mammals is located within the suprachiasmatic nuclei at the base of the hypothalamus. The circadian clock is entrained to the daily light/dark cycle by photic information from the retina. The retinal input to the clock is inhibited by exogenously applied serotonin agonists, perhaps mimicking an endogenous inhibitory serotonergic input to the clock arriving from the midbrain raphe. ⋯ These results suggest that pharmacologically blocking raphe input to the suprachiasmatic circadian clock results in substantially larger photically induced phase advances in wheel-running rhythms. This is further evidence that raphe input to the circadian clock is probably acting to dampen the clock's response to light under certain conditions. The large-magnitude phase shifts, and temporal-activity profile seen with BMY 7378 and S 15535, suggest that compounds with this unique pharmacological profile may be beneficial in the treatment of circadian phase delays recently reported to be a complication resulting from Alzheimer's disease.
-
Electroencephalographic activity at the transition from wakefulness to sleep is characterized by the appearance of spindles (12-15 Hz) and slow wave rhythms including delta activity (1-4 Hz) and slow oscillations (0.2-1 Hz). While these rhythms originate within neocortico-thalamic circuitry, their emergence during the passage into slow wave sleep (SWS) critically depends on the activity of neuromodulatory systems. Here, we examined the temporal relationships between these electroencephalogram rhythms and the direct current (DC) potential recorded from the scalp in healthy men (n=10) using cross-correlation analyses. ⋯ Data indicate close links between increasing spindle, delta and slow oscillatory activity and the occurrence of a steep surface negative cortical DC potential shift during the transition from wake to SWS. Likewise, a DC potential shift toward surface positivity accompanies the disappearance of these oscillatory phenomena at the end of the non-REM sleep period. The DC potential shifts may reflect gradual changes in extracellular ionic (Ca2+) concentration resulting from the generation of spindle and slow wave rhythms, or influences of neuromodulating systems on cortical excitability thereby controlling the emergence of cortical spindle and slow wave rhythms at SWS transitions.