Neuroscience
-
Comparative Study
Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice.
Victims of minimal traumatic brain injury (mTBI) do not show clear morphological brain defects, but frequently suffer lasting cognitive deficits, emotional difficulties and behavioral disturbances. In the present study we adopted a non-invasive closed-head weight-drop mouse model to produce mTBI. We examined the effects of 20, 25, or 30 g weight drop 7, 30, 60 and 90 days following injury on mice's ability to perform the Morris water maze. ⋯ These results indicate that the severity of injury may correlate with the degree of integration of the learning task. These cognitive deficits occurred without any other clear neurological damage, no evident brain edema, no notable damage to the blood-brain barrier and no early anatomical changes to the brain (observed by magnetic resonance imaging imaging). These results demonstrate that persistent deficits of cognitive learning abilities in mice, similar to those observed in human post-concussive syndrome, can follow mTBI without any anatomical damage to the brain and its surrounding tissue.
-
Comparative Study
The eyes suppress a circadian rhythm of FOS expression in the suprachiasmatic nucleus in the absence of light.
Photic information transmitted from the eyes to the suprachiasmatic nucleus (SCN) is essential for entrainment of circadian behavioral and physiological rhythms in mammals. Under conditions of constant darkness, these rhythms are maintained by the circadian pacemaker cells of the SCN [Bioessays 22 (2000) 23]. ⋯ Indeed, it was shown recently that removal of the eyes abolishes an endogenous circadian rhythm within cells of the SCN [Nat Neurosci 6 (2003) 111], a finding that led to the suggestion that specific rhythms of the SCN are driven by input from the eyes. In contrast, we show here that removal of the eyes amplifies a normally dampened endogenous circadian rhythm within the SCN, indicating that the eyes can suppress the expression of specific rhythms within the SCN while promoting others.
-
The viral transneuronal labeling method was used to demonstrate that orexin-containing neurons of the lateral hypothalamic area (LHA) are linked via multisynaptic connections to different sympathetic outflow systems. Two different types of transneuronal tracing experiments were performed: single- and double-virus studies. In the first series of experiments, Bartha pseudorabies virus (PRV), a retrograde transneuronal tracer, was injected into single sympathetic targets, viz., stellate ganglion, adrenal gland, celiac ganglion, and kidney. ⋯ The reverse placement of viral injections was made in another set of rats. In both paradigms, some orexin LHA neurons were transneuronally labeled with both viruses, indicating that they are capable of modulating multiple sympathetic outflow systems. These findings raise the possibility that orexin LHA neurons regulate general sympathetic functions, such as those that occur during arousal or the fight-or-flight response.
-
Changes in kappa-opioid receptor levels have been implicated in the development of physical dependence upon and withdrawal from the mixed agonist-antagonist opioid, butorphanol. Immunoblotting analysis was performed to determine the levels of kappa- and mu-opioid receptors in brain regions of rats in withdrawal from dependence upon butorphanol or morphine. Physical dependence was induced by a 72 h i.c.v. infusion with either butorphanol or morphine (26 nmol/microl/h). ⋯ These findings contrasted with those from morphine-withdrawal rats, in which the only changes noted were increases in the thalamus and paraventricular thalamus. Changes in the levels of the mu-opioid receptor protein were observed in 11 of 21 brain regions examined in morphine-withdrawal rats, but only in three of 21 in butorphanol-withdrawal rats. These results implicate a substantive and largely unique role for kappa-opioid receptors in mediation of the development of physical dependence upon, and the expression of withdrawal from, butorphanol, as opposed to the prototypical opioid analgesic, morphine.
-
Chronic opiate applications produce long-term impacts on many functions of the brain and induce tolerance, dependence, and addiction. It has been demonstrated that opioid drugs are capable to induce apoptosis of neuronal cells, but the mechanism is not clear. c-Jun N-terminal kinase 3 (JNK3), specifically expressed in brain, has been proved to mediate neuronal apoptosis and is involved in opiate-induced cell apoptosis in vitro. The present study investigated the effect of opioid administration on expression of JNK3, an important mediator involved in apoptosis of neurons, in rat brain. ⋯ The increased JNK3 mRNA in these brain areas returned to the control levels in 28 days following cessation of chronic morphine treatment. Taken together, these results demonstrated for the first time that the expression of JNK3 gene is regulated by opioids and that chronic opioid administration and withdrawal could induce sustained elevation of JNK3 mRNA in many important brain areas. The changes in JNK3 gene expression in brain induced by chronic opioid treatment may play a role in opioid-induced apoptosis and neurotoxicity.