Neuroscience
-
To investigate the role of neurotransmitter secretion in the development and stabilization of synapses, the innervation of the diaphragm and intercostal muscles was studied in munc18-1 null mutant mice, which lack regulated secretion. We found that this mutant is completely devoid of both spontaneous and evoked neuromuscular transmission throughout embryonic development. At embryonic day (E) 14, axonal targeting and main branching of the phrenic nerve were normal in this mutant, but tertiary branches were elongated and no terminal branches were observed at this stage, in contrast to control littermates. ⋯ In contrast, sensory ganglia in the dorsal root showed no obvious degeneration. These data suggest that regulated secretion is not essential for initial axon path finding, clustering of acetylcholine receptors, acetylcholinesterase or the formation of synapses. However, in the absence of regulated secretion, the maintenance of the motor neuronal system, organization of nerve terminal branches and stabilization of synapses is impaired and a-neural postsynaptic elements persist.
-
N-Acetyl-L-aspartyl-L-glutamate (NAAG) is one of the most abundant neuroactive compounds in the mammalian CNS. Our recent observations have suggested that NAAG administered into rat cerebral ventricles can cause neuronal death by apparently excitotoxic mechanisms that can be antagonized by the N-methyl-D-aspartate-receptor blockers and by ligands of metabotropic glutamate receptor of Group II. Therefore, the principal aim of the present study has been to use quantitative morphology, electron microscopy and terminal deoxynucleotidyl transferase-mediated biotin dUTP nick-end labeling to study a dose- and time-dependence as well as regional distribution of neurodegeneration in hippocampi of rats after the intraventricular infusion of 0.25 micromol NAAG/ventricle and of equimolar doses of L-glutamate (L-GLU) and N-acetyl-L-aspartate (NAA), breakdown products of NAAG. ⋯ The degeneration was characterized on the basis of ultrastructural appearance and DNA-fragmentation. The morphological changes caused by L-glutamate and NAA were much smaller than those observed after the administration of NAAG and displayed a different pattern of regional distribution. The present findings suggest that NAAG can cause a loss of hippocampal neurons in vivo, apparently resulting from the neurotoxicity of NAAG itself.
-
Acid-base transporters, such as the sodium-hydrogen exchangers (NHEs) and bicarbonate-dependent transporters, play an important role in the regulation of intracellular pH (pH(i)) in the CNS. Previous studies from our laboratory have shown that the absence of the major NHE isoform 1 (NHE1) reduced the steady-state pH(i) and recovery rate from an acid load in the hippocampal neurons not only in HEPES but also in HCO(3)(-) solutions (Yao et al., 1999). The purpose of the current study was to determine whether the NHE1 null mutation affects the expression of pH-regulatory transporters in the mouse CNS. ⋯ An increase in acid extruders (e.g. NHE3) and a decrease in acid loaders (e.g. AE3) suggest that there are some compensatory mechanisms that occur in NHE1 null mutant mice.
-
The neurochemistry of aggression and rage has largely focused on the roles played by neurotransmitters and their receptor mechanisms. In contrast, little attention has been given to the possible functions of other substances. Interleukin-1beta is an immune and brain-derived cytokine that is present in the hypothalamus. ⋯ In the third experiment, pretreatment with a selective 5-HT2 receptor antagonist, LY-53857, blocked the facilitating effects of interleukin-1beta upon defensive rage. These findings reveal for the first time that brain cytokines can dramatically alter aggressive behavior. In particular, interleukin-1beta in the medial hypothalamus potentiates defensive rage behavior elicited from the periaqueductal gray in the cat, and the potentiating effects of interleukin-1beta on this form of emotional behavior are mediated via a 5-HT2 receptor mechanism.
-
Cell volume regulation has been studied in neuronal and glial cultures but little is known about volume regulation in brain tissue with an intact extracellular space. We investigated volume regulation in hippocampal slices maintained in an interface chamber and exposed to hypo-osmotic medium. Relative changes in intracellular and extracellular volume were measured respectively as changes in light transmittance and extracellular resistance. ⋯ Taurine treatment had no effect on levels of several other amino acids but preserved slice potassium content. The results indicate a critical role for cellular taurine during hypo-osmotic volume regulation in hippocampal slices. Inconsistencies between optical measurements of cellular volume changes and electrical measurements of extracellular space are likely to result from the complex nature of light transmittance in the interface slice preparation.