Neuroscience
-
Several recent epidemiological studies have proposed that cholesterol-lowering drug Statin may provide protection against Alzheimer's disease (AD). Probucol is a non-Statin cholesterol-lowering drug and a potent inducer of apolipoprotein E (apoE) production in peripheral circulation. A recent clinical study using Probucol in elderly AD subjects revealed a concomitant stabilisation of cognitive symptoms and significant increases in apoE levels in the cerebral spinal fluid in these patients. ⋯ We report that Probucol induces the production of apoE and one of its main receptors, LRP, increases HMGCoAr (rate-limiting enzyme in cholesterol synthesis), substantially attenuates age-related increases in glial activation, and induces production of synaptic marker SNAP-25, a molecule commonly associated with synaptogenesis and dendritic remodeling. These findings suggest that Probucol could promote neural and synaptic plasticity to counteract the synaptic deterioration associated with brain aging through an apoE/LRP-mediated system. Consistent with the beneficial effects of other cholesterol-lowering drugs such as the Statin, Probucol could also offers additional benefits based on apoE neurobiology.
-
The membrane properties and receptor-mediated responses of rat dorsal raphe nucleus neurons were measured using intracellular recording techniques in a slice preparation. After each experiment, the recorded neuron was filled with neurobiotin and immunohistochemically identified as 5-hydroxytryptamine (5-HT)-immunopositive or 5-HT-immunonegative. The cellular characteristics of all recorded neurons conformed to previously determined classic properties of serotonergic dorsal raphe nucleus neurons: slow, rhythmic activity in spontaneously active cells, broad action potential and large afterhyperpolarization potential. ⋯ This was confirmed by immunohistochemistry showing that although the majority of 5-HT-immunopositive cells in the dorsal raphe nucleus were double-labeled for 5-HT(1A) receptor-IR, a small but significant population of 5-HT-immunonegative cells expressed the 5-HT(1A) receptor. These results underscore the heterogeneous nature of the dorsal raphe nucleus and highlight two membrane properties that may better distinguish 5-HT from non-5-HT cells than those typically reported in the literature. In addition, these results present electrophysiological and anatomical evidence for the presence of 5-HT(1A) receptors on non-5-HT neurons in the dorsal raphe nucleus.
-
The expression and functional responses of P2X receptors in bladder and cutaneous sensory neurons of adult rats and mice have been studied using immunohistochemistry and patch clamp techniques. Cell bodies of bladder pelvic afferents were identified in L6 and S1 dorsal root ganglia (DRG), following Fast Blue injection into the muscle wall of the urinary bladder. Similarly, cutaneous sensory neurons were identified in L3 and L4 DRG, following Fast Blue injection into the saphenous nerve innervating the skin. ⋯ The remaining bladder sensory neurons demonstrated biphasic, transient or no response to P2X agonists. In contrast, only 24% of cutaneous afferent neurons gave persistent currents to alpha beta meATP (30 microM), with 66% of cells giving transient or biphasic currents and the remaining 10% being non-responsive. Our results suggest that, in contrast to DRG neurons in general, bladder sensory neurons projecting via pelvic nerves express predominantly P2X(2/3) heteromeric receptors, which are likely to mediate the important roles of ATP as a signaling molecule of urinary bladder filling and nociception.
-
In previous studies electrically-evoked release of acetylcholine in septal slices was demonstrated. The present experiment aimed at verifying if this release involved intrinsic neurons bearing p75(NTR) receptors. Long-Evans rats sustained injections of 192 IgG-saporin into the medial septum/diagonal band of Broca (0.8 microg). ⋯ Our data exclude that a major part of the acetylcholine released by MS and DBB slices derived from intrinsic neurons bearing p75(NTR) receptors. In the LS, part of the released acetylcholine might be from projections of such neurons located in the LS, MS and/or DBB. These data also suggest that the MS and the DBB may be the target of extrinsic cholinergic innervation that does not bear p75(NTR) receptors.
-
A delayed-matching spatial working memory protocol in a 5-arm maze was used to test the hypothesis of differential roles for central nicotinic and muscarinic cholinergic receptors in mediating task performance. In experiment 1, using a within subjects-repeated design, groups of C57Bl/6 mice, previously trained to criterion with a 4 h retention interval separating presentation and test phases, received i.p. injections of either saline, scopolamine (0.8 mg/kg), mecamylamine (8.0 mg/kg), or the combination of scopolamine and mecamylamine before re-testing. Injections were given either, a) 15 min pre-presentation or, b) 30 s, c) 15 min, d) 3 h 45 min post-presentation in order to differentially affect the acquisition, trace maintenance and recall phases. ⋯ Although the data show that central nicotinic and muscarinic antagonists both modulate working memory performance, they indicate first, that scopolamine-induced "amnesia" results, not from selective post-synaptic M1 muscarinic blockade but from indirect over-activation of nicotinic receptors. Second, the observation of high levels of retention although nicotinic and muscarinic receptors had undergone combined blockade during a large part of the retention interval is incompatible with the concept that test-induced activation of central cholinergic neurones mediates memory trace maintenance. Finally, taken with data from experiment 2, using a short (20 min) treatment-to-test interval, we conclude that central nicotinic receptors play a key role in attentional processes enabling working memory trace access during retrieval.