Neuroscience
-
We used field potential and intracellular recordings in rat brain slices that included the hippocampus, a portion of the basolateral/lateral nuclei of the amygdala (BLA) and the entorhinal cortex (EC). Bath application of the convulsant 4-aminopyridine (50 microM) to slices (n=12) with reciprocally connected areas, induced short-lasting interictal-like epileptiform discharges that (i) occurred at intervals of 1.2-2.8 s, (ii) originated in CA3, and (iii) spread to EC and BLA. Cutting the Schaffer collaterals abolished them in both parahippocampal areas where slower interictal-like (interval of occurrence=4-17 s) and prolonged ictal-like discharges (duration=15+/-6.9 s, mean+/-S. ⋯ Thus, CA3 outputs in intact slices entrain EC and BLA networks into an interictal-like pattern that inhibits the propensity of these parahippocampal areas to generate prolonged ictal-like paroxysms. Accordingly, NMDA receptor-dependent ictal-like events are initiated in BLA or EC once the propagation of CA3-driven interictal-like discharges to these areas is abated by cutting the Schaffer collaterals. Similar inhibitory effects also occur by activating BLA outputs directed to EC at rates that mimic the CA3-driven interictal-like pattern.
-
Comparative Study
Complete sparing of spatial learning following posterior and posterior plus anterior cingulate cortex lesions at 10 days of age in the rat.
Neonatal posterior cingulate cortex lesions spare the spatial deficits that characterize adult lesions. The present experiments examined the possibility that the anterior cingulate cortex mediates the spared spatial behavior. Rats were given bilateral lesions of the posterior cingulate cortex or anterior plus posterior cingulate cortex on postnatal days 4 (P4), 10 (P10), or in adulthood (P120). ⋯ Adult animals were impaired on place learning relative to controls whereas place learning was spared in all the neonatal groups and sparing was complete in the group receiving day 10 lesions. The results are discussed in relation to neural mechanisms, including fiber rerouting, synaptic changes and generation of new neurons, that may mediate spared spatial following neonatal posterior cingulate cortex lesions. Also discussed is evidence indicating that the neonatal brain, especially the day 10, has a special ability to compensate for injury.
-
Somatosensory stimulation of primary somatosensory cortex (SI) using frequency discrimination offers a direct, well-defined and accessible way of studying cortical decisions at the locus of early input processing. Animal studies have identified and classified the neuronal responses in SI but they have not yet resolved whether during prolonged stimulation the collective SI response just passively reflects the input or actively participates in the comparison and decision processes. This question was investigated using tomographic analysis of single trial magnetoencephalographic data. ⋯ When only correct responses from the above two groups were used, the difference was even higher at later latencies (approximately 650 ms). For one subject who had enough trials of same perception to different input frequencies, e.g. responded 21 Hz to Stim2 at 21 Hz (correct) and 26-29 Hz (error), we found the sustained difference only before 650 ms. Our results suggest that SI is involved with the analysis of an input frequency and related to perception and decision at different latencies.
-
Comparative Study
Expression of auxiliary beta subunits of sodium channels in primary afferent neurons and the effect of nerve injury.
Multiple voltage-gated sodium channels are the primary mediators of cell excitability. They are multimers that consist of the pore-forming alpha subunit and auxiliary beta subunits. Although ion permeability and voltage sensing are primarily determined by the alpha subunit, beta subunits are important modulators of sodium channel function. ⋯ We also examined the expression of beta(3) mRNA in DRG neurons in the SNI model, a neuropathic pain model. We used activating transcription factor 3 to identify axotomized neurons, and found that beta(3) mRNA up-regulation occurred mainly in axotomized neurons in the neuropathic pain model. These data strongly suggest that beta(3) expression in injured DRG neurons following axotomy might be an important pathomechanism of post-nerve injury pain in primary sensory neurons.
-
Comparative Study
A role for peripheral somatostatin receptors in counter-irritation-induced analgesia.
Our hypothesis is that peripheral somatostatin (SRIF) has a role in counter-irritation-induced analgesia. Our paradigm involves the reduction of nociceptive behaviors produced by primary noxious stimuli (formalin or complete Freund's adjuvant [CFA] in the rat hind paw) by a counter-irritating stimulus (capsaicin [CAP] in the tail or muzzle). Activation of peripheral SRIF receptors is key since an SRIF receptor antagonist cyclo-somatostatin (c-SOM) and SRIF antibodies in the hind paw attenuate the counter-irritation-induced analgesia of both formalin and more persistent CFA nociception. ⋯ Intraplantar naloxone has no effect on the counter-irritation analgesia indicating that SRIF is not activating opioid receptors. These results indicate that in addition to the classic central descending noxious inhibitory control systems that underlie counter-irritation-induced analgesia, there is a peripheral contribution arising from activation of SRIF receptors. Identifying a peripheral contribution of SRIF to mechanisms of counter-irritation analgesia offers opportunities for peripheral therapy.