Neuroscience
-
Comparative Study
The rodent amygdala contributes to the production of cannabinoid-induced antinociception.
The amygdala is a temporal lobe region that is implicated in emotional information processing. The amygdala also is associated with the processing and modulation of pain sensation. Recently, we demonstrated that in nonhuman primates, the amygdala is necessary for the full expression of cannabinoid-induced antinociception [J Neurosci 21 (2001) 8238]. ⋯ In rats treated with intra-CeA muscimol, however, these effects of WIN55,212-2 were significantly reduced. The results constitute the first causal data demonstrating the necessity of descending pain-modulatory circuitry (of which the CeA is a component) for the full expression of cannabinoid-induced antinociception in the rat. Furthermore, the results complement previous findings suggesting an overlap in neural circuitry activated by opioids and cannabinoids.
-
Comparative Study
Ampakines reduce methamphetamine-driven rotation and activate neocortex in a regionally selective fashion.
It has been proposed that glutamatergic and dopaminergic systems are functionally opposed in their regulation of striatal output. The present study tested the effects of drugs that enhance AMPA-receptor-mediated glutamatergic transmission (ampakines) for their effects on dopamine-related alterations in cortical activity and locomotor behavior. Rats with unilateral 6-hydroxydopamine lesions of the ascending nigro-striatal dopamine system were sensitized to methamphetamine and then tested for methamphetamine-induced circling behavior in the presence and absence of ampakines CX546 and CX614. ⋯ Still larger ampakine-elicited effects were obtained in parietal cortex of the dopamine-depleted hemisphere where labeling densities were increased by approximately 60% above values found in methamphetamine-alone rats. With these effects, the hemispheric asymmetry of cortical activation was less pronounced in the ampakine-cotreatment group as compared with the methamphetamine-alone group. These results indicate that positive modulation of AMPA-type glutamate receptors 1) can offset behavioral disturbances arising from sensitized dopamine receptors and 2) increases aggregate neuronal activity in a regionally selective manner that is probably dependent upon behavioral demands.
-
Comparative Study
The perirhinal-entorhinal cortex, but not the hippocampus, is critical for expression of individual recognition in the context of the Coolidge effect.
The Coolidge effect is a phenomenon in which males show renewed sexual interest in a novel female following copulation to satiety with another female. In golden hamsters, this phenomenon depends on the ability to recognize conspecifics using chemosensory cues processed through the main olfactory system. Here we tested whether olfactory targets in the hippocampal system support this natural form of recognition memory. ⋯ This study reveals an essential role for the perirhinal-entorhinal cortex, but not the hippocampus, in a natural form of recognition memory within the social behavior of hamsters. The findings show a strikingly similar pattern to the effects of selective damage to the same brain regions on performance in standard recognition memory tasks by rats and monkeys. Therefore, the present data extend our understanding of the differential role of structures of the hippocampal memory system, showing continuity across species and between formal laboratory tests and the function of memory in natural social behavior.
-
Comparative Study
Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury.
Spinal cord injury leads to acute local ischemia, which may contribute to secondary degeneration. Hypoxia stimulates angiogenesis through a cascade of events, involving angiogenesis stimulatory substances, such as vascular endothelial growth factor (VEGF). To test the importance of angiogenesis for functional outcome and wound healing in spinal cord injury VEGF165 (proangiogenic), Ringer's (control) or angiostatin (antiangiogenic) were delivered locally immediately after a contusion injury produced using the NYU impactor and a 25 mm weight-drop. ⋯ Moreover, VEGF treatment led to decreased levels of apoptosis, as revealed by TUNEL assays. In situ hybridization demonstrated presence of mRNA for VEGF receptors Flt-1, fetal liver kinase-1, neuropilin-1 and -2 in several important cellular compartments of the spinal cord. The different experiments indicate that beneficial effects seen by acute VEGF delivery was attributable to protection/repair of blood vessels, decreased apoptosis and possibly also by other additional effects on glial cells or certain neuron populations.
-
Comparative Study
Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments.
The previous report of intracellular recording of hindlimb motoneurons in decerebrate cats [ 511] has suggested that the following mechanisms are involved in a generalized motor inhibition induced by stimulating the medullary reticular formation. First, the motor inhibition, which was prominent in the late latency (30-80 ms), can be ascribed to the inhibitory effects in parallel to motoneurons and to interneuronal transmission in reflex pathways. Second, both a group of interneurons receiving inhibition from flexor reflex afferents and a group of Ib interneurons mediate the late inhibitory effects upon the motoneurons. ⋯ Neither excitatory nor inhibitory effects with a late latency were observed in 69 (36.1%) cells which were located in the intermediate region and dorsal horn. These results suggest the presence of a functional organization of the spinal cord with respect to the production of the generalized motor inhibition. Lamina VII interneurons that receive inhibition from volleys in FRAs possibly mediate the postsynaptic inhibition from the medullary reticular formation in parallel to motoneurons and to interneurons in reflex pathways.