Neuroscience
-
Although much progress has been made in understanding synapse formation, little is known about the mechanisms underlying synaptic maintenance and loss. The formation of agrin-induced AChR clusters on cultured myotubes requires both activation of the receptor tyrosine kinase MuSK and intracellular calcium fluxes. Here, we provide evidence that such AChR clusters are maintained by agrin/MuSK-induced intracellular calcium fluxes. ⋯ Both the dephosphorylation and the dispersal are inhibited by the tyrosine phosphatase inhibitor pervanadate. In contrast, clamping intracellular calcium at the time of initial agrin stimulation has no effect on agrin-induced MuSK or AChR phosphorylation, but blocks AChR cluster formation. These findings suggest an avenue by which postsynaptic stability can be regulated by modification of intracellular signaling pathways that are distinct from those used during synapse formation.
-
Expression of pituitary adenylate cyclase activating polypeptide (PACAP) is increased in sensory neurons exposed to adjuvant induced peripheral inflammation. Local elevation in expression of the neurotrophin nerve growth factor (NGF) is a main factor contributing to the neuronal response to inflammation. ⋯ The results from this study show that inflammation triggered increases in PACAP expression occurs in small- to medium-sized dorsal root ganglion (DRG) neurons that also express trkA, and that this elevation in PACAP expression is prevented by systemic injection of anti-NGF. This supports a role for NGF as a positive regulator of PACAP expression during inflammation.
-
Comparative Study
Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus.
To investigate the role of group III metabotropic glutamate receptors (mGluRs) in the globus pallidus (GP), whole-cell recordings were performed using rat brain slice preparations. Application of the group III mGluRs specific agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) suppressed the amplitude of striatal stimulation-induced IPSCs and internal capsule stimulation-induced EPSCs in most of the GP neurons that were capable of generating repetitive firing without spike accommodation. The suppression of IPSCs and EPSCs was accompanied by an increase in the paired-pulse ratio. ⋯ L-AP4 reduced the frequency of mIPSCs and mEPSCs without changing their amplitude distribution. L-AP4 failed to change iontophoretic glutamate induced responses. These results suggest that the subthalamo-pallidal glutamatergic input might homo- and hetero-synaptically control GABAergic and glutamatergic transmission in the GP.
-
The role of endogenous opioid peptides and receptors has recently been investigated using knockout mice. Although the affinities of opioid peptides for opioid receptors has been known for many years there is still some uncertainty over which receptor is the endogenous target for each peptide. To address this issue we have studied using quantitative autoradiography the levels of all four opioid receptor subtypes (micro, delta, kappa and opioid receptor-like 1 [ORL1]) in brains sectioned from enkephalin and dynorphin knockouts, as well as from double knockouts. ⋯ Combinatorial double knockouts did not show any changes in addition to those observed in single knockouts. The largest changes were observed in limbic regions and our results suggest that proenkephalin peptides are tonically active at micro and delta-receptors predominantly in these areas. Prodynorphin peptides appear to regulate mostly the kappa-receptor but they are also modulators of micro- and delta-receptors.
-
To gain insight into the role of melatonin and dopamine in retinal development, gene expression of two melatonin receptors, MT1 and MT2, as well as five dopamine receptors, D1, D2, D3, D4 and D5, in the rat eye was analyzed by reverse transcription-polymerase chain reaction across various developmental stages. MT1 transcript levels reached maximum levels at embryonic day (E) 16 and then decreased gradually until reaching adult levels by postnatal day (P) 14. MT2 transcript levels similarly peaked at E16, but then decreased dramatically until birth to its lowest levels, which were maintained throughout the postnatal period. ⋯ Gene expression of D1-like receptors, D1 and D5, showed a substantial increase to adult levels during the fetal period at E16 and E20, respectively. Transcript levels of D2-like receptors, D2 and D4, on the other hand, were not detected before birth but increased significantly to adult levels by P7 and P14, respectively. The present findings suggest the presence of unique developmental mechanisms by which transcription of various G protein-coupled receptors are regulated in the eye.