Neuroscience
-
Activation of muscarinic receptors leads to proliferation of astroglial cells and this effect is inhibited by ethanol. Among the intracellular pathways involved in the mitogenic action of muscarinic agonists, activation of the atypical protein kinase C zeta (PKC zeta) appears to be of most importance, and is also affected by low ethanol concentrations. PKC zeta has been reported to activate nuclear factor kappaB (NF-kappaB), a transcription factor that has been shown to play an important role in cell proliferation. ⋯ Increased DNA synthesis was also antagonized by the IkappaBalpha kinase inhibitor BAY 11-7082. Ethanol (25-100 mM) inhibited the translocation of p65 and the binding of NF-kappaB to DNA in both 1321N1 astrocytoma cells and primary rat cortical astrocytes. Together, these results suggest that activation of NF-kappaB by muscarinic receptors in astroglial cells is important for carbachol-induced DNA synthesis and that ethanol-mediated inhibition of cell proliferation may be due in part to inhibition of NF-kappaB activation.
-
Comparative Study
Neuronal activity regulates GABAA receptor subunit expression in organotypic hippocampal slice cultures.
The postnatal expression of GABA(A) receptor subunit mRNAs in the rat brain, including the hippocampus, exhibits a unique temporal and regional developmental profile in vivo, which may be altered by external stimuli. Using the in situ hybridization technique we have now studied the in vitro expression of alpha1,alpha2, alpha 4, alpha 5, beta 1, beta 3, gamma 2, and gamma 3 subunit mRNAs of GABA(A) receptors in organotypic hippocampal slices cultured for 7 days. To find out whether neuronal activity regulates the subunit expression, a subset of cultures was chronically treated either with a GABA(A) receptor antagonist picrotoxin, or by a non-N-methyl-D-aspartate (non-NMDA)-receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). ⋯ In picrotoxin-treated cultures, the expression of alpha1, alpha 5 and gamma 2 mRNAs was significantly increased in pyramidal cell layers, and in DNQX-treated cultures the expression of alpha2 mRNA in CA3c and DG, and that of beta1 in DG. Changes in the expression of GABA(A) receptor subunit mRNAs in treated cultures suggest that neuronal activity can regulate their regional expression in vitro. Since the expression profile in untreated control cultures closely resembled that observed earlier in vivo, organotypic hippocampal slice cultures could serve as a good model system to study the regulatory mechanisms of receptor expression under well-controlled experimental conditions in the developing hippocampus.
-
To test the hypotheses that (i). electroencephalograms (EEGs) are largely made up of oscillations at many frequencies and (ii). that the peaks in the power spectra represent oscillations, we applied a new method, called the period specific average (PSA) to a wide sample of EEGs. Both hypotheses can be rejected. Although the principal peaks in the two spectra agree most of the time, quite often a peak in the power spectrum accompanies no periodicity peak and some periodicity peaks have no power spectral peak. ⋯ In the face of wide variability, we do not report any systematic differences in periodicity among EEGs from different parts of the brain or different brain states or species; it will take many more exemplars of each state, species or brain part to establish characteristic features. The PSA method may be the best so far proposed to demonstrate and quantify periodicity in wide-band time series with noise, but it has serious limitations. Discussion leads to the conclusion that it is time for a new paradigm or metaphor for brain waves.
-
Comparative Study
Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition.
Glucose is the main substrate that fulfills energy brain demands. However, in some circumstances, such as diabetes, starvation, during the suckling period and the ketogenic diet, brain uses the ketone bodies, acetoacetate and beta-hydroxybutyrate, as energy sources. Ketone body utilization in brain depends directly on its blood concentration, which is normally very low, but increases substantially during the conditions mentioned above. ⋯ We have previously demonstrated that accumulation of extracellular glutamate after inhibition of its transporters, induces neuronal death in vivo during energy impairment induced by glycolysis inhibition. In the present study we have assessed the protective potentiality of the ketone body, acetoacetate, against glutamate-mediated neuronal damage in the hippocampus of rats chronically treated with the glycolysis inhibitor, iodoacetate, and in hippocampal cultured neurons exposed to a toxic concentration of iodoacetate. Results show that acetoacetate efficiently protects against glutamate neurotoxicity both in vivo and in vitro probably by a mechanism involving its role as an energy substrate.
-
To date, the exact role of inducible nitric oxide synthase (iNOS) in inflammatory pain remains controversial. In the present study, we combined a pharmacological strategy (using a selective iNOS inhibitor) with a genomic strategy (using mice lacking the iNOS gene) to address the function of iNOS in the central mechanism of carrageenan-induced persistent inflammatory pain. In the wild type mice, intrathecal administration of L-N(6)-(1-iminoethyl)-lysine, a selective iNOS inhibitor, significantly inhibited thermal hyperalgesia in the late phase but not in the early phase of carrageenan inflammation. ⋯ We also found that expression of neuronal NOS but not endothelial NOS in the lumbar enlargement segments was significantly increased in iNOS knockout mice compared with wild type mice at 24 h after carrageenan injection. Our results indicate that neuronal NOS might compensate for the function of iNOS in the late phase of carrageenan-induced inflammatory pain in iNOS knockout mice. This suggests that iNOS may be sufficient, but not essential, for the late phase of the carrageenan-induced thermal hyperalgesia.