Neuroscience
-
Comparative Study
Attenuation of neuropathic manifestations by local block of the activities of the ventrolateral orbito-frontal area in the rat.
Clinical and recent imaging reports demonstrate the involvement of various cerebral prefrontal areas in the processing of pain. This has received further confirmation from animal experimentation showing an alteration of the threshold of acute nociceptive reflexes by various manipulations in the orbito-frontal cortical areas. The present study investigates the possible involvement of this area in the modulation of neuropathic manifestations in awake rats. ⋯ Our results correlate well with the established connections of the ventrolateral orbital area with the thalamic nucleus subnucleus involved in the procession of thermal nociception. The transient effects reported following permanent lesions in the orbital areas may reflect its flexible role in pain modulation. This observation provides further evidence on the plasticity of the neural networks involved in the regulation of nociceptive behavior.
-
Perforant path activation of ectopic granule cells that are born after pilocarpine-induced seizures.
Granule cells in the dentate gyrus are born throughout life, and various stimuli can affect their development in the adult brain. Following seizures, for instance, neurogenesis increases greatly, and some new cells migrate to abnormal (ectopic) locations, such as the hilus. Previous electrophysiological studies of this population have shown that they have intrinsic properties that are similar to normal granule cells, but differ in other characteristics, consistent with abnormal integration into host circuitry. ⋯ Presumably this is due to polysynaptic activation by the perforant path. These results indicate that synaptic reorganization after seizures can lead to robust activation of newly born hilar granule cells by the perforant path, even when their dendrites are not in the terminal field of the perforant path. Additionally, the fact that these cells can be found in normal tissue and develop similar synaptic responses, suggests that seizures, while not necessary for their formation, strongly promote their generation and the development of associated circuits, potentially contributing to a lowered seizure threshold.
-
Glutamate-mediated excitotoxicity might contribute to the pathogenesis of Huntington's disease and other polyglutamine repeat disorders. We used murine neocortical cultures derived from transgenic and knock-in mice to test the effect of expression of expanded polyglutamine-containing huntingtin on neuronal vulnerability to excitotoxins or other insults. ⋯ Neocortical neurons cultured from mice transgenic for an expanded CAG repeat-containing exon 1 of the human HD gene (Mangiarini et al., 1996, R6/2 line) and non-transgenic littermate controls also had similar vulnerability to NMDA and kainate-mediated excitotoxicity. These observations suggest that expression of expanded polyglutamine-containing huntingtin does not acutely alter the vulnerability of cortical neurons to excitotoxic, oxidative or apoptotic insults.
-
P2X receptors are non-selective cation channels gated by extracellular ATP and are encoded by a family of seven subunit genes in mammals. These receptors exhibit high permeabilities to calcium and in the mammalian nervous system they have been linked to modulation of neurotransmitter release. Previously, three complementary DNAs (cDNAs) encoding members of the zebrafish gene family have been described. ⋯ Analysis of gene expression patterns was carried out using in situ hybridization, and seven of the nine genes were found to be expressed in embryos at 24 and 48 h post-fertilization. Of the seven that were expressed, six were present in the nervous system and four of these demonstrated considerable overlap in cells present in the sensory nervous system. These results suggest that P2X receptors might play a role in the early development and/or function of the sensory nervous system in vertebrates.
-
Comparative Study
Stimulant doses of caffeine induce c-FOS activation in orexin/hypocretin-containing neurons in rat.
Although caffeine is a commonly used CNS stimulant, neuronal mechanisms underlying its stimulatory effect are not fully understood. Orexin (hypocretin)-containing neurons play a critical role in arousal and might be activated by acute administration of caffeine. We examined this possibility by using dual-immunostaining for orexin B and c-Fos protein as a marker for neuronal activation. ⋯ In contrast, caffeine significantly increased the number of non-orexin-immunoreactive neurons expressing c-Fos only in the dorsomedial nucleus. These results indicate that systemically administered caffeine preferentially activates orexin neurons over non-orexin neurons in the same field, and that this activation is most pronounced in the perifornical region where orexin neurons are most concentrated. The activation of orexin neurons might play a role in the behavioural activation by caffeine.