Neuroscience
-
Plastic changes in motor cortex capillary structure and function were examined in three separate experiments in adult rats following prolonged exercise. The first two experiments employed T-two-star (T(2)*)-weighted and flow-alternating inversion recovery (FAIR) functional magnetic resonance imaging to assess chronic changes in blood volume and flow as a result of exercise. The third experiment used an antibody against the CD61 integrin expressed on developing capillaries to determine if motor cortex capillaries undergo structural modifications. ⋯ These data indicate that capillary growth occurs in motor areas of the cerebral cortex as a robust adaptation to prolonged motor activity. In addition to capillary growth, the vascular system also experiences heightened flow under conditions of activation. These changes are chronic and observable even in the anesthetized animal and are measurable using noninvasive techniques.
-
A control circuit is proposed to model the command of saccadic eye movements. Its wiring is deduced from a mathematical constraint, i.e. the necessity, for motor orders processing, to compute an approximate inverse function of the bio-mechanical function of the moving plant, here the bio-mechanics of the eye. This wiring is comparable to the anatomy of the cerebellar pathways. ⋯ The novelty of this model of movement control is that its structure is entirely deduced from mathematical and physical constraints, and is consistent with general anatomy, cell connectivity and functioning of the cerebellar pathways. Even the learning rules can be deduced from calculation, and they reproduce long term depression, the learning process which takes place in the dendritic arborization of the Purkinje cells. This approach, based on the laws of mathematics and physics, appears thus as an efficient way of understanding signal processing in the motor system.
-
Apolipoprotein (APO, gene; apo, protein) D, a member of the lipocalin family, has been implicated in several, pathological conditions but neither its physiologic function(s) nor ligand(s) has been clearly identified so far. Presuming a role in nerve de- and regeneration, several groups investigated apoD alterations in Alzheimer's disease (AD). Reported data, however, were not unanimous. ⋯ No correlation was found to amyloid deposits. Brain samples with widespread NF changes showed significantly higher apoD than cases with low Braak stages. This increase, however, was restricted to the APOE epsilon3/3 group, whereas the APOE epsilon4 group did not show significant variations in hippocampal apoD.
-
Head-direction (HD) cells in subcortical areas of the mammalian brain are tuned to a particular head direction in space; a population of such neurons forms a neural compass that may be relevant for spatial navigation. The development of neural circuits constituting the head-direction system is poorly understood. Inspired by electrophysiological experiments about the role of recurrent synaptic connections, we investigate a learning rule that teaches neurons to amplify feed-forward inputs. ⋯ That is, during head movements in darkness, neurons resemble HD cells by maintaining a fixed tuning to head direction. The proposed learning rule exhibits similarities with known forms of anti-Hebbian synaptic plasticity. We conclude that selective amplification could serve as a general principle for the synaptic development of multimodal feedback circuits in the brain.
-
Comparative Study
Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice.
Dopamine (DA) is a neurotransmitter that has been implicated in a wide variety of psychiatric disorders that include attention deficit-hyperactivity disorder (ADHD), schizophrenia, and drug abuse. Recently, we have been working with a mouse in which the gene for the DA transporter (DAT) has been disrupted. This mouse is hyperactive in the open field, displays an inability to inhibit ongoing behaviors, and is deficient on learning and memory tasks. ⋯ Since the DAT gene is disrupted in the KO mouse, these findings suggest that dopaminergic mechanisms may mediate the WT responses, whereas non-dopaminergic systems predominate in the mutant. In the mutants, it appears that limbic areas and non-dopaminergic transmitter systems within these brain regions may mediate responses to psychostimulants. Inasmuch as the KO mouse may represent a useful animal model for ADHD and because psychostimulants such as cocaine are reinforcing to these animals, our results may provide some useful insights into the neural mechanisms-other than DA-that may contribute to the symptoms of ADHD and/or drug abuse in human patients.