Neuroscience
-
Comparative Study
The influence of the extracellular matrix on the morphology and intracellular pH of cultured astrocytes exposed to media lacking bicarbonate.
In previous work we showed that the polygonal shape of hippocampal astrocytes cultured on poly-L-lysine changes to a stellate morphology with loss of actinomyosin stress fibers on exchanging the culture medium for saline buffered with HEPES [Brain Res 946 (2002)12]. By contrast, in bicarbonate-buffered saline containing Ca(2+) astrocytes remained polygonal and continued to express stress fibers. Evidence suggests that stellation induced by saline buffered with HEPES is related to intracellular acidification due to the absence of bicarbonate. ⋯ Two observations suggested the involvement of integrins and focal adhesions. (1) Treatment of cultures on collagens with a blocking antibody to the beta1 integrin subunit abolished protection against HEPES-induced stellation. (2) Compared with polylysine, astrocytes cultured on collagens expressed increased contents of phosphotyrosine proteins, focal adhesion proteins vinculin and paxillin, the beta1 integrin subunit and increased numbers of focal adhesions labelled with anti-vinculin. The observation that astrocytes cultured on collagen I or IV, in contrast to polylysine, express stress fibers and a constant intracellular pH in the absence of buffering by bicarbonate may be related to the fact that in the intact brain astrocytic processes (or end-feet) encounter and bind to collagen IV and laminin in the basement membrane of the endothelial cells which surround the cerebral capillaries. It is also possible that astrocytes retain this capacity from early development when fibrous matrix proteins are present.
-
Comparative Study
In vitro reconstitution of signal transmission from a hair cell to the growth cone of a chick vestibular ganglion cell.
Signal transmission from a chick hair cell to the growth cone of a vestibular ganglion cell was examined by placing an acutely dissociated hair cell on the growth cone of a cultured vestibular ganglion cell. Electrical stimuli were applied to the hair cell while monitoring the intracellular Ca(2+) concentration ([Ca(2+)](i)) at the growth cone or recording whole-cell currents from the vestibular ganglion cell. Electrical stimulation of the hair cell induced [Ca(2+)](i) increases at the growth cone and inward currents in the vestibular ganglion cell. ⋯ Glutamate (100 nM-300 microM) applied to the vestibular ganglion cell by the Y-tube method induced inward currents which were also antagonized by CNQX, but not by APV. These results indicate that the electrical stimulation of a hair cell induced glutamate or glutamate like agent release from the hair cell, which activated non-N-methyl-D-aspartate receptors at the growth cone of the vestibular ganglion cell, followed by action potentials and [Ca(2+)](i) elevation in the vestibular ganglion cell. This is the first demonstration of in vitro reconstitution of functional signal transmission from a hair cell to a vestibular ganglion cell.
-
Comparative Study
Prolonged exposure to inhalational anesthetic nitrous oxide kills neurons in adult rat brain.
Short-term exposure of adult rats to nitrous oxide (N2O), an inhalational anesthetic and NMDA (N-methyl-D-aspartate) antagonist, causes a reversible neurotoxic vacuole reaction in neurons of the posterior cingulate/retrosplenial cortex (PC/RSC) which resembles that caused by low doses of other NMDA antagonists. Since high doses or prolonged exposure to other NMDA antagonists can cause neurons to die, we assessed whether prolonged N2O exposure might also cause neuronal cell death. Adult female Sprague-Dawley rats were exposed to 150-vol% N2O (approximately EC50 for N2O anesthesia in rats) for various durations from 1 to 16 h. ⋯ Our findings demonstrate that short-term exposure of adult rats to N2O causes injury to PC/RSC neurons that is rapidly reversible, and prolonged N2O exposure causes neuronal cell death. These neurotoxic effects, including the cell death reaction, can be prevented by coadministration of GABAmimetic anesthetic agents. Duration of NMDA receptor blockade appears to be an important determinant of whether neurons are reversibly injured or are driven to cell death by an NMDA antagonist drug.
-
The innervation of gill muscles of lampreys was investigated in a semi-intact preparation in which the respiratory rhythm was maintained for more than 2 days. Lesion experiments showed that the muscles of gill 1 are innervated by nerves VII (facial) and IX (glossopharyngeal), and those of gill 2 by nerve IX and the first branchial branch of nerve X (vagal). The other gills are supplied by the other branchial branches of nerve X. ⋯ The conduction velocity of VII and caudal X motor axons was found to be the same. Differences in the length of motoneuron axons appear to account for the rostro-caudal delay in gill contraction. The data presented here provide a much needed anatomical and physiological basis for further studies on the neural network controlling respiration in lampreys.
-
Comparative Study
Immunohistochemical localization of myosin Va in the adult rat brain.
Brain myosin Va (MVa) is a molecular motor associated with plastic changes during development. MVa has previously been detected in the cell body and in dendrites of neuronal cells in culture, in cells of the guinea-pig cochlea, as well as in cerebellar cells. Adult Wistar rats (n=14), 250-300 g, were perfused with standard methods for immunohistochemistry, using a polyclonal, affinity-purified rabbit antibody against MVa tail domain. ⋯ The analysis of MVa and glial fibrillary acidic protein staining in adjacent brain sections demonstrated a clear-cut neuronal labeling rather than an astroglial staining. The studies presented here represent a comprehensive map of MVa regional distribution in the CNS of the adult rat and may contribute to the basic understanding of its role in brain function and plasticity, particularly in relationship to phenomena that involve molecular motors, such as neurite outgrowth, organelle transport and neurotransmitter-vesicle cycling. It is important to highlight that this is a pioneer immunohistochemical study on the distribution of MVa on the whole brain of adult rats, a first step toward the understanding of its function in the CNS.