Neuroscience
-
Comparative Study
Molecular and behavioral analysis of the R6/1 Huntington's disease transgenic mouse.
Transgenic mice expressing exon 1 of the human Huntington's disease (HD) gene carrying a 115 CAG repeat (line R6/1) are characterized by a neurologic phenotype involving molecular, behavioral and motor disturbances. We have characterized the R6/1 to establish a set of biomarkers, which could be semi-quantitatively compared. We have measured motor fore- and hindlimb coordination, fore- and hindpaw footprinting, general activity and anxiety, feetclasping, developmental instability. ⋯ Mice tested at 23 and 24 weeks of age showed significant impairments in open field and plus-maze analysis respectively. We observed no significant abnormalities in stride length of the R6/1 mouse model. As the analyzed parameters are easily detected and measured, the R6/1 mouse appears to be a good model for evaluating new drugs or types of therapy for HD.
-
Comparative Study
Effects of testosterone on hippocampal CA1 spine synaptic density in the male rat are inhibited by fimbria/fornix transection.
This study investigated the contribution of sub-cortical afferent input to the effects of testosterone (T) on spine synapse density in the CA1 subfield of the hippocampus, in adult male rats. Gonadectomized (GDX) male rats exhibited a considerably lower density of spine synapses in the CA1 region than control, intact males. ⋯ However, FF transection partially inhibited the responses to TP in GDX animals. These data suggest that the effects of T on spine synapse density in the CA1 region of the male rat hippocampus are partially, but not completely, dependent on afferent sub-cortical input.
-
GLT-1 is the predominant glutamate transporter in most brain regions and therefore plays a major role in terminating synaptic transmission and protecting neurons from glutamate neurotoxicity. In the present study we assessed (i) the regulation of GLT-1 expression in the spinal cord after peripheral nociceptive stimulation and (ii) the nociceptive behavior of rats following inhibition or transient knockdown of spinal GLT-1. Formalin injection into one hindpaw caused a rapid transient upregulation of GLT-1 protein expression in the spinal cord which did not occur when rats were pretreated with morphine (10 mg/kg, i.p.) suggesting that the nociceptive input specifically caused the increase of GLT-1 transcription. ⋯ Similar results were obtained with a transient reduction of GLT-1 protein expression by antisense oligonucleotides. These data suggest that inhibition of GLT-1 activity or expression reduces excitatory synaptic efficacy and thereby nociception. Mechanisms that might explain this phenomenon may include activation of inhibitory metabotropic glutamate receptors, postsynaptic desensitization or disturbance of glutamate recycling.
-
Sleep is an unavoidable activity of the brain. The delay of the time to sleep (sleep deprivation), induces an increase of slow-wave sleep and rapid-eye-movement (REM) sleep (rebound) once the subject is allowed to sleep. This drive to sleep has been hypothesized to be dependent on the accumulation of sleep-inducing molecules and on the high expression of these molecule receptors. ⋯ Results indicated that SR141716A prevents REM sleep rebound and REM sleep deprivation does not modify the expression of the CB1 protein or mRNA. However, REM sleep deprivation plus 2 h of sleep rebound increased the CB1 receptor protein and, slightly but significantly, decreased mRNA expression. These results suggest that endocannabinoids may be participating in the expression of REM sleep rebound.
-
The membrane properties and receptor-mediated responses of rat dorsal raphe nucleus neurons were measured using intracellular recording techniques in a slice preparation. After each experiment, the recorded neuron was filled with neurobiotin and immunohistochemically identified as 5-hydroxytryptamine (5-HT)-immunopositive or 5-HT-immunonegative. The cellular characteristics of all recorded neurons conformed to previously determined classic properties of serotonergic dorsal raphe nucleus neurons: slow, rhythmic activity in spontaneously active cells, broad action potential and large afterhyperpolarization potential. ⋯ This was confirmed by immunohistochemistry showing that although the majority of 5-HT-immunopositive cells in the dorsal raphe nucleus were double-labeled for 5-HT(1A) receptor-IR, a small but significant population of 5-HT-immunonegative cells expressed the 5-HT(1A) receptor. These results underscore the heterogeneous nature of the dorsal raphe nucleus and highlight two membrane properties that may better distinguish 5-HT from non-5-HT cells than those typically reported in the literature. In addition, these results present electrophysiological and anatomical evidence for the presence of 5-HT(1A) receptors on non-5-HT neurons in the dorsal raphe nucleus.