Neuroscience
-
Although the localization and role of kainate receptors in the CNS remain poorly known, complex, and rather unusual, pre-synaptic auto- and heteroreceptor functions have been disclosed in various brain regions. Basal ganglia nuclei, including the globus pallidus, are enriched in GluR6/7 immunoreactivity. Using electron microscopic immunocytochemistry for GluR6/7 combined with post-embedding immunogold labeling for GABA, we demonstrate that GluR6/7 immunoreactivity is enriched in a large subpopulation of small unmyelinated, presumably pre-terminal, axons as well as GABAergic and putative glutamatergic axon terminals in the internal and external segments of the globus pallidus in monkey. Our findings suggest that kainate receptors are located to subserve pre-synaptic modulation of inhibitory and excitatory transmission in the primate globus pallidus.
-
The neuropeptide neuromedin U (NMU) has been shown to have significant effects on cardiovascular, gastrointestinal and CNS functions. The peptide was first isolated from the porcine spinal cord and later shown to be present in spinal cords of other species. Little is known about the distribution of neuromedin U receptors (NMURs) in the spinal cord and the spinal action of the peptide. ⋯ Evoked responses to touch and pinch stimuli were increased by 439+/-94% and 188+/-36% (P<0.01, n=6) respectively. The behavioral and electrophysiological data demonstrate, for the first time, a pro-nociceptive action of NMU. The restricted distribution of NMU receptors to a region of the spinal cord involved in nociception suggests that this peptide receptor system may play a role in nociception.
-
A large body of evidence suggests that nitric oxide (NO) and ATP act as neurotransmitters in the regulatory mechanisms concerning several autonomic functions at the level of both the hypothalamus and the brain stem. In the present study, we investigated whether neuronal NO synthase containing neurones also express P2X(2) receptor subunit of the ATP-gated ion channel via double-labelling fluorescence immunohistochemistry. Our data demonstrate that a high percentage of neuronal NO synthase-immunoreactive neurones are also P2X(2)-immunoreactive in the rostral ventrolateral medulla (98%) and supraoptic nucleus of the hypothalamus (92%). ⋯ In contrast to the supraoptic nucleus, there was a lower percentage of co-localisation between NO synthase and P2X(2) receptor subunit in the paraventricular nucleus of the hypothalamus. In summary, this study demonstrates for the first time that there is a widespread co-localisation of neuronal NO synthase and P2X(2) receptor subunit in the hypothalamus and brain stem of the rat. Further studies are required to elucidate whether NO and ATP functionally interact within the hypothalamus and the brain stem.
-
Comparative Study
The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences.
Fragile X syndrome is a common form of inherited mental retardation caused by the absence of the fragile X mental retardation protein (FMRP). It has been hypothesized that FMRP is involved in the processing and/or translation of mRNAs. Human and mouse target-mRNAs, containing purine quartets, have previously been identified. ⋯ Many of the proteins encoded by the identified FMRP targets have been implicated in neuroplasticity. Steady state levels of target-mRNAs were unchanged in the brain of fragile X mice. However, levels of two target-encoded proteins, an L-type calcium channel subunit and MAP1B, were downregulated in specific brain regions suggesting a defect in the expression of target-encoded proteins in fragile X syndrome.
-
Comparative Study
Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain.
Monocarboxylate transporters (MCTs) play an important role in the metabolism of all cells. They mediate the transport of lactate and pyruvate but also some other substrates such as ketone bodies. It has been proposed that glial cells release monocarboxylates to fuel neighbouring neurons. ⋯ In contrast to MCT2, MCT4 is exclusively present in astroglia during all stages of development. Furthermore, MCT4 expression is very low at birth and reaches adult level by P14. Our results are consistent with previous data suggesting that in the immature brain much of the energy demand is met by monocarboxylates and ketone bodies.