Neuroscience
-
Glial cell line-derived neurotrophic factor (GDNF) is necessary for the development of sensory neurons, and appears to be critical for the survival of dorsal root ganglion (DRG) cells that bind the lectin IB4. Intrathecal infusion of GDNF has been shown to prevent and reverse the behavioral expression of experimental neuropathic pain arising from injury to spinal nerves. This effect of GDNF has been attributed to a blockade of the expression of the voltage gated, tetrodotoxin-sensitive sodium channel subtype, Na(V)1.3, in the injured DRG. ⋯ These observations suggest that high dose, exogenous GDNF has a broad neuroprotective role in injured primary afferent. The receptor(s) that mediates these effects of GDNF is not known. GDNF's ability to block neuropathic pain states is not likely to be specific to Na(V)1.3 expression.
-
Comparative Study
Alzheimer's disease proteins in cerebellar and hippocampal synapses during postnatal development and aging of the rat.
Alzheimer's dementia may be considered a synaptic disease of central neurons: the loss of synapses, reflected by early cognitive impairments, precedes the appearance of extra cellular focal deposits of beta-amyloid peptide in the brain of patients. Distinct immunocytochemical patterns of amyloid precursor proteins (APPs) have previously been demonstrated in the synapses by ultrastructural analysis in the cerebellum and hippocampus of adult rats and mice. Now we show that during postnatal development and during aging in these structures, the immunocytochemical expression of APPs increases in the synapses in parallel with the known up-regulation of total APPs brain levels. ⋯ In addition, double-labelling immunocytofluorescence detects these proteins close to synaptophysin at the growth cones of developing cultured neurons. Thusly, the brain expression of APPs and PSs appears to be regulated synchronously during lifespan in the synaptic compartments where the proteins are colocated. This suggests that PS-dependent processing of important synaptic proteins such as APPs could intervene in age-induced adjustments of synaptic relationships between specific types of neurons.
-
Comparative Study
Glial cell line-derived neurotrophic factor contributes to delayed inflammatory hyperalgesia in adjuvant rat pain model.
Neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, are members of the structurally related neurotrophin family that play important roles in pain modulation. Although there are also indications for the involvement of glial cell line-derived neurotrophic factor (GDNF), it is unclear whether and how GDNF is involved in inflammatory pain. In the present study, we studied the expression pattern of GDNF in dorsal root ganglia (DRG) and spinal cord, using confocal microscopy. ⋯ To assess the impact of this down-regulation on pain transmission, we used a function-blocking antibody against GDNF delivered intrathecally in the same chronic-pain animal models. Injection of this antibody to GDNF produced no immediate effect, but decreased the delayed, bilateral hyperalgesia induced from a unilateral injection of complete Freund's adjuvant. The effect of this antibody coincided with the down-regulation of GDNF immunoreactivity in response to inflammation, suggesting that GDNF supports biochemical changes that contribute to hyperalgesia.
-
The heme oxygenase (HO) enzyme system has been shown to participate in nociceptive signaling in a number of different models of pain. In these experiments we investigated the role of the HO type 2 (HO-2) isozyme in tolerance to the analgesic effects of morphine, and the hyperalgesia and allodynia which are measurable upon cessation of administration. Wild type C57Bl/6 wild type mice or HO-2 null mutants in that background strain were treated with morphine for 5 days. ⋯ In pellet-treated mice two- to three-fold increases were observed in the abundance of these species, but very little change was observed in the null-mutant mice. Taken together our results indicate that HO-2 participates in the acquisition of opioid tolerance, the expression of mechanical allodynia after cessation of opioid administration and in gene regulation occurring in the setting of treatment with morphine. Furthermore, these studies suggest that the mechanisms underlying analgesic tolerance and opioid-induced hypersensitivity are at least somewhat distinct.
-
The inferior colliculus (IC) plays a key role in the processing of auditory information and is thought to be an important site for genesis of wild running seizures that evolve into tonic-clonic seizures. IC neurons are known to have Ca(2+) channels but neither their types nor their pharmacological properties have been as yet characterized. Here, we report on biophysical and pharmacological properties of Ca(2+) channel currents in acutely dissociated neurons of adult rat IC, using electrophysiological and molecular techniques. ⋯ The fraction of current (approximately 12%) resistant to the above blockers, which was blocked by 30 microM nickel and inactivated with tau of 15-50 ms, was considered as R-type Ca(2+) channel current. Consistent with the pharmacological evidences, Western blot analysis using selective Ca(2+) channel antibodies showed that IC neurons express Ca(2+) channel alpha(1A), alpha(1B), alpha(1C), alpha(1D), and alpha(1E) subunits. We conclude that IC neurons express functionally all members of HVA Ca(2+) channels, but only a subset of these neurons appear to have developed functional LVA channels.