Neuroscience
-
The cortical information flow via the perforant path represents a major excitatory projection to the hippocampus. Lesioning this projection leads to massive degeneration and subsequently to reorganization in its termination zones as well as in primary non-affected subfields of the hippocampus. The molecular mechanisms and factors which are involved in the postlesional events are poorly defined. ⋯ In the hippocampus, the control level was reached again at 21 dal, whereas the cortex reached the control level at 10 dal. In comparison, the mRNA transcripts of the receptors CCK(A) and CCK(B) remained unchanged. Since CCK-containing neurons are involved in the modulation of pyramidal and granule cell excitability, our data indicate a time course correlation between CCK mRNA expression and postlesional axonal sprouting response in the hippocampus.
-
Comparative Study
Local mu and delta opioid receptors regulate amphetamine-induced behavior and neuropeptide mRNA in the striatum.
The purpose of this study was to investigate the role that mu and delta opioid receptor blockade has upon stimulant-induced behavior and neuropeptide gene expression in the striatum. Acute administration of amphetamine (2.5 mg/kg i.p.) caused an increase in behavioral activity and preprodynorphin, substance P, and preproenkephalin mRNA expression. Intrastriatal infusion of the mu opioid antagonist, H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP), or the delta opioid antagonist, H-Tyr-Tic[CH(2)NH]-Phe-Phe-OH (TIPPpsi), significantly decreased amphetamine-induced vertical activity. ⋯ However, preproenkephalin mRNA levels in the dorsal striatum were increased to the same extent by CTAP, amphetamine, or a combination of the two drugs. In contrast, TIPPpsi significantly decreased amphetamine-induced mRNA expression of all three neuropeptides. These data indicate that both mu and delta receptor subtypes differentially regulate amphetamine-induced behavior and neuropeptide gene expression in the rat striatum.
-
Comparative Study
Expression pattern of the stem cell leukaemia gene in the CNS of the embryonic and adult mouse.
The basic helix-loop-helix (bHLH) transcription factor stem cell leukaemia (SCL) is a 'master regulator' of haematopoiesis, where SCL is pivotal in cell fate determination and differentiation. SCL has also been detected in CNS, where other members of the bHLH-family have been shown to be indispensable for neuronal development; however, no detailed expression pattern of SCL has so far been described. We have generated a map of SCL expression in the embryonic and adult mouse brain based on histochemical analysis of LacZ reporter gene expression in sequential sections of brain tissue derived from SCL-LacZ knockin mice. ⋯ LacZ staining was also evident in parts of the intermediate and marginal zone of the aqueduct and ventricular zone of the fourth ventricle at E12.5 and E14. These cells may represent progenitor stages of differentiating neural cells. Given the presence of SCL in both the developing brain and in post-mitotic neurons, it seems likely that the function of SCL in neuronal differentiation may differ from its function in maintaining the differentiated state of the mature neuron.
-
Comparative Study
Organization of projections from the raphe nuclei to the vestibular nuclei in rats.
Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. ⋯ Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that raphe-vestibular connections are organized to selectively modulate processing in regions of the vestibular nuclear complex that receive input from specific cerebellar zones. This represents a potential mechanism whereby motor activity and behavioral arousal could influence the activity of cerebellovestibular circuits.
-
Activation of cannabinoid CB(2) receptors attenuates thermal nociception in untreated animals while failing to produce centrally mediated effects such as hypothermia and catalepsy [Pain 93 (2001) 239]. The present study was conducted to test the hypothesis that activation of CB(2) in the periphery suppresses the development of inflammatory pain as well as inflammation-evoked neuronal activity at the level of the CNS. The CB(2)-selective cannabinoid agonist AM1241 (100, 330 micrograms/kg i.p.) suppressed the development of carrageenan-evoked thermal and mechanical hyperalgesia and allodynia. ⋯ AM1241 suppressed carrageenan-evoked Fos protein expression in the superficial and neck region of the dorsal horn but not in the nucleus proprius or the ventral horn. The suppression of carrageenan-evoked Fos protein expression induced by AM1241 was blocked by coadministration of SR144528 in all spinal laminae. These data provide evidence that actions at cannabinoid CB(2) receptors are sufficient to suppress inflammation-evoked neuronal activity at rostral levels of processing in the spinal dorsal horn, consistent with the ability of AM1241 to normalize nociceptive thresholds and produce antinociception in inflammatory pain states.