Neuroscience
-
Comparative Study
Local mu and delta opioid receptors regulate amphetamine-induced behavior and neuropeptide mRNA in the striatum.
The purpose of this study was to investigate the role that mu and delta opioid receptor blockade has upon stimulant-induced behavior and neuropeptide gene expression in the striatum. Acute administration of amphetamine (2.5 mg/kg i.p.) caused an increase in behavioral activity and preprodynorphin, substance P, and preproenkephalin mRNA expression. Intrastriatal infusion of the mu opioid antagonist, H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP), or the delta opioid antagonist, H-Tyr-Tic[CH(2)NH]-Phe-Phe-OH (TIPPpsi), significantly decreased amphetamine-induced vertical activity. ⋯ However, preproenkephalin mRNA levels in the dorsal striatum were increased to the same extent by CTAP, amphetamine, or a combination of the two drugs. In contrast, TIPPpsi significantly decreased amphetamine-induced mRNA expression of all three neuropeptides. These data indicate that both mu and delta receptor subtypes differentially regulate amphetamine-induced behavior and neuropeptide gene expression in the rat striatum.
-
P2X receptors are non-selective cation channels gated by extracellular ATP and are encoded by a family of seven subunit genes in mammals. These receptors exhibit high permeabilities to calcium and in the mammalian nervous system they have been linked to modulation of neurotransmitter release. Previously, three complementary DNAs (cDNAs) encoding members of the zebrafish gene family have been described. ⋯ Analysis of gene expression patterns was carried out using in situ hybridization, and seven of the nine genes were found to be expressed in embryos at 24 and 48 h post-fertilization. Of the seven that were expressed, six were present in the nervous system and four of these demonstrated considerable overlap in cells present in the sensory nervous system. These results suggest that P2X receptors might play a role in the early development and/or function of the sensory nervous system in vertebrates.
-
Expression of pituitary adenylate cyclase activating polypeptide (PACAP) is increased in sensory neurons exposed to adjuvant induced peripheral inflammation. Local elevation in expression of the neurotrophin nerve growth factor (NGF) is a main factor contributing to the neuronal response to inflammation. ⋯ The results from this study show that inflammation triggered increases in PACAP expression occurs in small- to medium-sized dorsal root ganglion (DRG) neurons that also express trkA, and that this elevation in PACAP expression is prevented by systemic injection of anti-NGF. This supports a role for NGF as a positive regulator of PACAP expression during inflammation.
-
Comparative Study
Cyclooxygenase 2 in infiltrating inflammatory cells in injured nerve is universally up-regulated following various types of peripheral nerve injury.
We previously reported the up-regulation of cyclooxygenase 2 (COX2) in injured sciatic nerve of rats with partial sciatic nerve ligation (PSNL) and the reversal of PSNL-elicited tactile allodynia by local injection of the COX inhibitor ketorolac [Eur J Neurosci 15 (2002) 1037]. We further asked whether COX2 up-regulation in injured nerve is a universal phenomenon following various types of nerve injury. In the current study, we observed that abundant COX2 immunoreactive (IR) cell profiles appeared in injured nerves of rats following spinal nerve ligation (SNL), chronic constriction injury (CCI) and complete sciatic nerve transection. ⋯ Local ketorolac's anti-allodynia lasted much shorter when given 2-3 months after lesion. Local ketorolac failed to induce anti-allodynia 7 months after lesion, a time when COX2-IR cells completely disappeared from the injured nerve except a few cells at the injury site. Our data strongly suggest that during the initial several months after nerve injury, peripherally over-produced prostaglandins play an important role in the maintenance of neuropathic pain.
-
Activation of cannabinoid CB(2) receptors attenuates thermal nociception in untreated animals while failing to produce centrally mediated effects such as hypothermia and catalepsy [Pain 93 (2001) 239]. The present study was conducted to test the hypothesis that activation of CB(2) in the periphery suppresses the development of inflammatory pain as well as inflammation-evoked neuronal activity at the level of the CNS. The CB(2)-selective cannabinoid agonist AM1241 (100, 330 micrograms/kg i.p.) suppressed the development of carrageenan-evoked thermal and mechanical hyperalgesia and allodynia. ⋯ AM1241 suppressed carrageenan-evoked Fos protein expression in the superficial and neck region of the dorsal horn but not in the nucleus proprius or the ventral horn. The suppression of carrageenan-evoked Fos protein expression induced by AM1241 was blocked by coadministration of SR144528 in all spinal laminae. These data provide evidence that actions at cannabinoid CB(2) receptors are sufficient to suppress inflammation-evoked neuronal activity at rostral levels of processing in the spinal dorsal horn, consistent with the ability of AM1241 to normalize nociceptive thresholds and produce antinociception in inflammatory pain states.