Neuroscience
-
Comparative Study
[3H]-nociceptin ligand-binding and nociceptin opioid receptor mrna expression in the human brain.
Following the cloning of the novel nociceptin opioid receptor (NOP(1)) and the identification of its endogenous ligand orphanin FQ/nociceptin the distribution and functional role of the NOP(1) receptor system have been studied mainly in the rodent CNS. In the present study the regional distribution and splice variant expression of the NOP(1) receptor was investigated in the adult human brain using [(3)H]-nociceptin autoradiography, NOP(1) reverse transcriptase PCR and mRNA in situ hybridization. Ligand binding revealed strong expression of functional NOP(1) receptors in the cerebral cortex and moderate signals in hippocampus and cerebellum. ⋯ A considerable expression of N-terminal NOP(1) splice variant mRNAs was not detectable in the human brain by means of in situ hybridization. This suggests that functional NOP(1) receptors in the human brain are encoded by N-terminal full length NOP(1) transcripts. The present data on the anatomical distribution of nociceptin binding sites and NOP(1) receptor mRNA contribute to the knowledge about opioid receptor systems in the human brain and may promote the understanding of function and pharmacology of the orphanin FQ/nociceptin receptor system in the human CNS.
-
Comparative Study
A comparative magnetoencephalographic study of cortical activations evoked by noxious and innocuous somatosensory stimulations.
We recorded somatosensory-evoked magnetic fields and potentials produced by painful intra-epidermal stimulation (ES) and non-painful transcutaneous electrical stimulation (TS) applied to the left hand in 12 healthy volunteers to compare cortical responses to noxious and innocuous somatosensory stimulations. Our results revealed that cortical processing following noxious and innocuous stimulations was strikingly similar except that the former was delayed approximately 60 ms relative to the latter, which was well explained by a difference in peripheral conduction velocity mediating noxious (Adelta fiber) and innocuous (Abeta fiber) inputs. The first cortical activity evoked by both ES and TS was in the primary somatosensory cortex (SI) in the hemisphere contralateral to the stimulated side. ⋯ The time course of the vertex potential corresponded to that of the activity of the medial temporal area. Our results suggested that cortical processing was similar between noxious and innocuous stimulation in SI and SII, but different in insular cortex. Our data also implied that activities in the amygdala/hippocampal formation represented common effects of noxious and tactile stimulations.
-
Comparative Study
Raphe pallidus neurons mediate prostaglandin E2-evoked increases in brown adipose tissue thermogenesis.
To elucidate central neural pathways contributing to the febrile component of the acute phase response to pyrogenic insult, I sought to determine whether activation of neurons in the rostral raphe pallidus (RPa) is required for the increase in brown adipose tissue (BAT) thermogenesis evoked by i.c.v. prostaglandin E(2) (PGE(2)) in urethane-chloralose-anesthetized, ventilated rats. BAT sympathetic nerve activity (SNA; +224% of control), BAT temperature (+1.8 degrees C), expired CO(2) (+1.3%), mean arterial pressure (+23 mm Hg), and heart rate (+73 beats per minute) were significantly increased after i.c.v. PGE(2) (2 microg). ⋯ In conclusion, activation of neurons in RPa, possibly BAT sympathetic premotor neurons, is essential for the increases in BAT SNA and BAT thermogenesis stimulated by i.c.v. administration of PGE(2). The increased heart rate likely contributing to an augmented cardiac output supporting the increased BAT thermogenesis in response to PGE(2) is also dependent on neurons in RPa. These results contribute to our understanding of central neural substrates for the augmented thermogenesis during fever.
-
To date, the exact role of inducible nitric oxide synthase (iNOS) in inflammatory pain remains controversial. In the present study, we combined a pharmacological strategy (using a selective iNOS inhibitor) with a genomic strategy (using mice lacking the iNOS gene) to address the function of iNOS in the central mechanism of carrageenan-induced persistent inflammatory pain. In the wild type mice, intrathecal administration of L-N(6)-(1-iminoethyl)-lysine, a selective iNOS inhibitor, significantly inhibited thermal hyperalgesia in the late phase but not in the early phase of carrageenan inflammation. ⋯ We also found that expression of neuronal NOS but not endothelial NOS in the lumbar enlargement segments was significantly increased in iNOS knockout mice compared with wild type mice at 24 h after carrageenan injection. Our results indicate that neuronal NOS might compensate for the function of iNOS in the late phase of carrageenan-induced inflammatory pain in iNOS knockout mice. This suggests that iNOS may be sufficient, but not essential, for the late phase of the carrageenan-induced thermal hyperalgesia.
-
Previous publications have demonstrated a prominent central and corticotropin releasing hormone-mediated action of the endomorphins (EMs) on both open-field behaviour and the hypothalamo-pituitary-adrenal (HPA) axis. In the present experiments, the direct action of endomorphin-1 (EM1) on pituitary adrenocorticotropic hormone (ACTH) release, adrenal corticosterone secretion and the roles of nitric oxide (NO) and dopamine (DA) in the HPA and behavioural responses elicited by EM1 were investigated in mice. In vitro perifusion studies indicated that the action of EM1 on the HPA system appears to be confined to the hypothalamus, as EM1 did not influence the corticosterone secretion from adrenal slices and moderately attenuated the ACTH release from anterior pituitary slices. ⋯ In conclusion, our endocrine studies suggest an important role of NO in the mediation of the EM1-evoked corticosterone secretion. They also indicate that EM1 activates the HPA axis at a hypothalamic level and dopamine is not involved in this process. In contrast, the behavioural experiments reflect that the locomotor activation induced by EM1 is mediated by NO and dopamine, and the superfusion studies demonstrate that NO transmits the dopamine release enhancing effect of EM1.