Neuroscience
-
Comparative Study
The proprotein convertase PC2 is involved in the maturation of prosomatostatin to somatostatin-14 but not in the somatostatin deficit in Alzheimer's disease.
A somatostatin deficit occurs in the cerebral cortex of Alzheimer's disease patients without a major loss in somatostatin-containing neurons. This deficit could be related to a reduction in the rate of proteolytic processing of peptide precursors. Since the two proprotein convertases (PC)1 and PC2 are responsible for the processing of neuropeptide precursors directed to the regulated secretory pathway, we examined whether they are involved first in the proteolytic processing of prosomatostatin in mouse and human brain and secondly in somatostatin defect associated with Alzheimer's disease. ⋯ However, the content and enzymatic activity of the PC2 mature form were similar in Alzheimer patients and controls. Therefore, the cortical somatostatin defect is not due to convertase alteration occuring during Alzheimer's disease. Further studies will be needed to assess the mechanisms involved in somatostatin deficiency in Alzheimer's disease.
-
Comparative Study
The impact of Abeta-plaques on cortical cholinergic and non-cholinergic presynaptic boutons in alzheimer's disease-like transgenic mice.
A previous study in our laboratory, involving early stage, amyloid pathology in 8-month-old transgenic mice, demonstrated a selective loss of cholinergic terminals in the cerebral and hippocampal cortices of doubly transgenic (APP(K670N,M671L)+PSl(M146L)) mice, an up-regulation in the single mutant APP(K670N,M671L) mice and no detectable change in the PSl(M146L) transgenics [J Neurosci 19 (1999) 2706]. The present study investigates the impact of amyloid plaques on synaptophysin and vesicular acetylcholine transporter (VAChT) immunoreactive bouton numbers in the frontal cortex of the three transgenic mouse models previously described. When compared as a whole, the frontal cortices of transgenic and control mice show no observable differences in the densities of synaptophysin-immunoreactive boutons. ⋯ Confocal and electron microscopic observations confirmed the preferential infiltration of dystrophic cholinergic boutons into fibrillar amyloid aggregates. We therefore hypothesize that extracellular Abeta aggregation preferentially affects cholinergic terminations prior to progression onto other neurotransmitter systems. This is supported by the observable presence of non-cholinergic sprouting, which may be representative of impending neuritic degeneration.
-
Comparative Study
Glial cell line-derived neurotrophic factor contributes to delayed inflammatory hyperalgesia in adjuvant rat pain model.
Neurotrophic factors, such as nerve growth factor and brain-derived neurotrophic factor, are members of the structurally related neurotrophin family that play important roles in pain modulation. Although there are also indications for the involvement of glial cell line-derived neurotrophic factor (GDNF), it is unclear whether and how GDNF is involved in inflammatory pain. In the present study, we studied the expression pattern of GDNF in dorsal root ganglia (DRG) and spinal cord, using confocal microscopy. ⋯ To assess the impact of this down-regulation on pain transmission, we used a function-blocking antibody against GDNF delivered intrathecally in the same chronic-pain animal models. Injection of this antibody to GDNF produced no immediate effect, but decreased the delayed, bilateral hyperalgesia induced from a unilateral injection of complete Freund's adjuvant. The effect of this antibody coincided with the down-regulation of GDNF immunoreactivity in response to inflammation, suggesting that GDNF supports biochemical changes that contribute to hyperalgesia.
-
Comparative Study
Deprivation of sensory inputs to the olfactory bulb up-regulates cell death and proliferation in the subventricular zone of adult mice.
The main olfactory bulb (MOB) is the first relay on the olfactory sensory pathway and the target of the neural progenitor cells generated in the subventricular zone (SVZ) lining the lateral ventricles and which migrate along the rostral extension of the SVZ, also called the rostral migratory stream (RMS). Within the MOB, the neuroblasts differentiate into granular and periglomerular interneurons. A reduction in the number of granule cells during sensory deprivation suggests that neurogenesis may be influenced by afferent activity. ⋯ These data suggest that olfactory inputs are required for the survival of newborn neural progenitors. The greatest enhancement in proliferation occurred in the extension of the RMS located in the MOB, revealing a population of local precursors mitotically stimulated following axotomy. Together, these findings indicate that olfactory inputs may strongly modulate the balance between neurogenesis and apoptosis in the SVZ and RMS and provide a model for further investigation of the underlying molecular mechanisms of this activity-dependent neuronal plasticity.
-
Capsaicin stimulates neurokinin release in the spinal cord when applied both centrally and peripherally. To determine whether these two actions have different mechanisms, we measured neurokinin 1 receptor (NK1R) internalization in rat spinal cord slices elicited by incubating the whole slice or just the dorsal root with capsaicin. NK1R internalization produced by incubating the slices with capsaicin was abolished by the NK1R antagonist RP-67580, by the vanilloid receptor 1 (VR1) antagonist capsazepine, and by eliminating Ca(2+) from the medium, but was not affected by the Na(+) channel blocker lidocaine. ⋯ Neither the NMDA receptor blocker MK-801 nor the GABA(B) agonist baclofen decreased NK1R internalization produced by 1 microM capsaicin applied to the slices, but they inhibited the internalization produced by 0.3 microM capsaicin applied to the slices or 1 microM capsaicin applied to the root. Therefore, capsaicin can produce neurokinin release from primary afferents 1) by a direct action on their central terminals and 2) by increasing the firing of action potentials on their axons. The first effect largely bypasses other modulatory mechanism, but the second does not.