Neuroscience
-
Discharge properties in response to intracellularly applied, rectangular currents were measured in units of the mid (lateralis dorsalis and centrolateral nuclei) and posterolateral (lateralis posterior and pulvinar nuclei) thalamus of conscious cats. A separate aim was to determine if neuronal excitability changed in association with changes in stimulus-evoked activity after the animals were trained to discriminate between two acoustic stimuli when performing a conditioned motor response. Low threshold spike (l.t.s.) discharges were observed in three of 272 cells given 1 nA intracellular, hyperpolarizing current pulses of 40 ms duration. ⋯ After conditioning, increases in excitability were found in cells of the mid thalamus that responded selectively to the click conditioned stimulus (CS) that elicited the conditioned response, and decreases in excitability were found in cells of the posterolateral thalamus that responded to the discriminative acoustic stimulus (DS) to which the animals were trained not to respond. An earlier study showed a potentiation of discharge in response to the CS in units of the midthalamus after similar conditioning and a reduction of the proportion of DS responsive units and peak discharge to the DS in units of the posterolateral thalamus. We conclude that the discharge properties of units of the mid and posterolateral thalamus can change to support discrimination between acoustic stimuli of different functional significance after conditioning.
-
Fatty acid amide hydrolase (FAAH) catalyses hydrolysis of the endocannabinoid arachidonoylethanolamide ("anandamide") in vitro and regulates anandamide levels in the brain. In the cerebellar cortex, hippocampus and neocortex of the rat brain, FAAH is located in the somata and dendrites of neurons that are postsynaptic to axon fibers expressing the CB(1) cannabinoid receptor [Proc R Soc Lond B 265 (1998) 2081]. This complementary pattern of FAAH and CB(1) expression provided the basis for a hypothesis that endocannabinoids may function as retrograde signaling molecules at synapses in the brain [Proc R Soc Lond B 265 (1998) 2081; Phil Trans R Soc Lond 356 (2001) 381] and subsequent experimental studies have confirmed this [Science 296 (2002) 678]. ⋯ Here FAAH may nevertheless influence endocannabinoid signaling but more remotely. Finally, there are regions of the brain where FAAH-immunoreactive neurons and/or oligodendrocytes occur in the absence of CB(1)-immunoreactive fibers and here FAAH may be involved in regulation of signaling mediated by other endocannabinoid receptors or by receptors for other fatty acid amide signaling molecules. In conclusion, by comparing the distribution of FAAH and CB(1) in the mouse brain, we have provided a neuroanatomical framework for comparative analysis of the role of FAAH in regulation of the spatiotemporal dynamics of retrograde endocannabinoid signaling in different regions of the brain.
-
The function of the second nuclear estrogen receptor, estrogen receptor beta (ERbeta), in the brain is largely unknown. The present study tested whether 1) ERbeta in the paraventricular nucleus (PVN) of the hypothalamus has a direct role in the hypothalamic-pituitary-adrenal (HPA) axis-mediated stress function, and 2) whether corticosterone (CORT) can regulate ERbeta gene expression in the PVN in the intact, cycling female rat. To test the first hypothesis a pure estrogen receptor antagonist, ICI182, 780, was microinjected into the PVN bilaterally and stress-induced CORT response to an acute stressor (15 min restraint) was measured at 0, 15, 30, 60 and 90 min time points. ⋯ Adrenalectomy reduced ERbeta mRNA expression in the PVN, whereas CORT replacement fully reversed this effect in a dose-dependent fashion. Both antagonist inhibition of CORT response and CORT-mediated regulation of ERbeta mRNA were found to be estrus cycle-dependent in the intact, cycling female. These data suggest that ERbeta in the PVN may critically modulate the HPA axis response to stress and is, in turn, regulated by circulating CORT.
-
Comparative Study
Differential regulation of corticosteroid receptors by monoamine neurotransmitters and antidepressant drugs in primary hippocampal culture.
Hyperactivity of the hypothalamic-pituitary-adrenal axis is a characteristic feature of depressive illness. The centrally located corticosteroid receptors, the glucocorticoid and mineralocorticoid receptors, are thought to be important modulators of this axis and changes in the levels of these receptors, particularly in the hippocampus, may underlie the hyperactivity observed. Various antidepressant drugs increase hippocampal mineralocorticoid and glucocorticoid receptor levels in vivo. ⋯ However, glucocorticoid receptor induction by fluoxetine or amitriptyline was not blocked by WAY 100635 or propanolol. These results show that 5HT, NA and antidepressants act directly but via distinct mechanisms on hippocampal neurones to regulate mineralocorticoid and glucocorticoid receptor expression. Thusly, manipulation of neurotransmitter or antidepressant levels in the brain may aid in reversing hypothalamic-pituitary-adrenal axis hyperactivity by restoring hippocampal corticosteroid receptor balance.
-
Comparative Study
Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice.
Victims of minimal traumatic brain injury (mTBI) do not show clear morphological brain defects, but frequently suffer lasting cognitive deficits, emotional difficulties and behavioral disturbances. In the present study we adopted a non-invasive closed-head weight-drop mouse model to produce mTBI. We examined the effects of 20, 25, or 30 g weight drop 7, 30, 60 and 90 days following injury on mice's ability to perform the Morris water maze. ⋯ These results indicate that the severity of injury may correlate with the degree of integration of the learning task. These cognitive deficits occurred without any other clear neurological damage, no evident brain edema, no notable damage to the blood-brain barrier and no early anatomical changes to the brain (observed by magnetic resonance imaging imaging). These results demonstrate that persistent deficits of cognitive learning abilities in mice, similar to those observed in human post-concussive syndrome, can follow mTBI without any anatomical damage to the brain and its surrounding tissue.