Neuroscience
-
The mitogen-activated protein kinase/extracellular-signal regulated kinase (MAPK/ERK) cascade is an important contributor to synaptic plasticity that underlies learning and memory. ERK activation by the MAPK/ERK kinase (MEK) leading to cyclic-AMP response element binding protein (CREB) phosphorylation is implicated in the formation of long-term memory. We have demonstrated that CREB phosphorylation in the olfactory bulb (OB) is important for aversive olfactory learning in young rats, yet whether MAPK/ERK functions as an upstream regulator are necessary for this olfactory learning remains to be determined. ⋯ Phosphorylated ERKs (P-ERKs) 1 and 2 were significantly increased for 60 min after the training without changes in total ERKs 1 and 2. By contrast, intrabulbar infusion of PD98059 during the training significantly reduced P-ERKs 1 and 2 as well as phosphorylated CREB without any effects on the total ERKs or CREB. Taken together with the previous findings, these results indicate that the MAPK/ERK-CREB pathway is required for the long-term, but not the short-term, facilitation process of aversive olfactory learning in young rats.
-
Texture information is an elementary feature utilized by the human visual system to automatically, or pre-attentively, segment the visual scene. The neural substrate underlying human texture processing as well as the basic computational mechanisms remains largely unknown up to now. We propose a neural model of texture processing which integrates the data obtained by a variety of methods into a common computational framework. ⋯ The model allows to link human performance in texture segmentation with model cell activation patterns, in turn permitting to trace back fundamental psychophysical results on texture processing to their putative neural origins. Most importantly, it enables us to identify and evaluate the functional role of feedback connections between cortical areas in the context of texture processing, namely the suppression of ambiguous cell activities leading to a sharply localized detection of texture boundaries. One of the likely neural origins of modulatory effects on V1 cell activation levels, as observed in electrophysiological studies using single- and multi-unit recordings, can be resolved.
-
Comparative Study
Combined intrastriatal dopamine D1 and serotonin 5-HT2 receptor stimulation reveals a mechanism for hyperlocomotion in 6-hydroxydopamine-lesioned rats.
Loss of dopaminergic innervation to the striatum increases the sensitivity of dopamine (DA) D1 and serotonin (5-HT) 5-HT2 receptor signaling. Previous work from our laboratory has shown that systemic co-administration of D1 and 5-HT2 receptor agonists leads to the synergistic overexpression of striatal preprotachykinin mRNA levels in the DA-depleted, but not intact animals. In the present study, we examined this mechanism as related to locomotor behavior. ⋯ Combined administration of subthreshold SKF82958 and DOI doses (0.1 microg+0.1 microg) synergistically increased locomotor behavior only in 6-OHDA-lesioned rats. These effects were blocked by either the D1 antagonist SCH23390 3-methyl-1-phenyl-2,3,4,5-tetrahydro-7-chloro-8-hydroxy-(1H)-3-benzazepine or the 5-HT2 antagonist ritanserin (each 1.0 microg in 0.8 microl/side). The results of this study suggest that the behavioral synergy induced by local co-stimulation of D1 and 5-HT2 receptors within the 6-OHDA-lesioned striatum may lead to hyperkinesias that can occur with continued pharmacological treatment of Parkinson's disease.
-
For peripheral iron to reach the brain, it must transverse the blood-brain barrier. In order for the brain to obtain iron, transferrin receptors are present in the vascular endothelial cell to facilitate movement of transferrin bound iron into the brain parenchyma. However, a number of significant voids exist in our knowledge about transport of iron into the brain. ⋯ Blocking pinocytosis had no effect on either transferrin or iron transcytosis. These results indicate that there is both transferrin-mediated and non-transferrin-mediated transcytosis of iron and that the process is influenced by the iron status of the cells. These data have considerable implications for common neurodegenerative diseases that are associated with excess brain iron accumulation and the numerous neurological complications associated with brain iron deficiency.
-
Comparative Study
Immune rejection of a facial nerve xenograft does not prevent regeneration and the return of function: an experimental study.
Nerve grafts may be used to repair damaged peripheral nerves and also to facilitate spinal cord regeneration after experimental trauma. Little is known, however, about the possible use of xenografts and the role of immune rejection in the outcome of repair. ⋯ With longer (15-20 mm) transplants, however, restoration of eye closure becomes dependent on cyclosporine administration. Thus, in a situation where nerve repair does not occur without a graft, a host immune attack has an attritional effect which is not sufficient to prevent repair over short distances, but becomes obvious when the regenerating fibres have to cross longer segments of transplanted tissue.