Neuroscience
-
The suprachiasmatic nucleus (SCN), the dominant circadian pacemaker in mammalian brain, sends axonal projections to the hypothalamic paraventricular nucleus (PVN), a composite of magno- and parvocellular neurons. This neural network likely offers SCN output neurons a means to entrain diurnal rhythmicity in various autonomic and neuroendocrine functions. Earlier investigations using patch-clamp recordings in slice preparations have suggested differential innervation by SCN efferents to magnocellular versus parvocellular PVN cells. ⋯ At 1 microM where baclofen had no significant postsynaptic effect, evidence of activation of presynaptic GABA(B) receptors included reduction in SCN-evoked IPSCs and EPSCs with no change in their kinetics, and paired-pulse depression that was sensitive to both baclofen and saclofen. Baclofen also induced significant reductions in frequency but not amplitudes of miniature IPSCs and EPSCs. These observations suggest that levels of synaptically released GABA from the terminals of SCN output neurons can influence the relative contribution of pre- versus postsynaptic GABA(B) receptors in modulating both excitatory and inhibitory SCN innervation to parvocellular PVN neurons.
-
The expression and microanatomical localization of the muscarinic cholinergic m5 receptor subtype was investigated in rat circle of Willis and pial arteries by in situ hybridization, immunoblotting and immunohistochemistry. In situ hybridization histochemistry revealed a strong signal in the endothelium of circle of Willis and pial arteries and a moderate signal in the tunica media of the same arteries, within smooth muscle. Exposure of membranes of arteries to anti-m5 receptor protein antibodies caused the development of a band of approximately 81 kDa. ⋯ Medium (external diameter 200-100 microm) and small-sized (external diameter smaller than 100 microm) pial arteries displayed a significantly higher immune staining than large-sized pial arteries or circle of Willis arteries. The above data that are consistent with recent functional studies reporting cholinergic dilation of cerebral blood vessels mediated via a m5 receptor, have shown that both endothelial and muscular components of cerebral arteries synthesize and express a muscarinic m5 receptor. In view of the peculiar localization in cerebral vessels, handling of the muscarinic m5 receptor may be considered as an approach in the treatment of cerebrovascular disease.
-
To investigate developmental changes in neurosteroid modulation of GABA(A) receptors, whole-cell currents were elicited by applying GABA with allopregnanolone or pregnenolone sulfate (PS) to dentate granule cells (DGCs), acutely isolated from 7-14-day-old and adult rats. GABA evoked larger currents from dentate granule cells acutely isolated from adult rats (adult DGCs) than from neonatal DGCs, due to increased efficacy (1662+/-267 pA in adult DGCs versus 1094+/-198 pA in neonatal DGCs, P=0.004), and current density (0.072+/-0.01 pA/microm(2) in neonatal rat DGCs to 0.178+/-0.02 pA/microm(2) in adult DGCs), but unchanged potency (EC(50) was 18.5+/-2 microm in adult DGCs, and 26.6+/-7.9 microm in neonatal DGCs, P=0.21). Allopregnanolone sensitivity of GABA(A) receptor currents increased during development due to an increased potency (21.1+/-4.7 nM in adult DGCs versus 94.6+/-9 nM in neonatal DGCs, P=0.0002). ⋯ This demonstrated that cell bodies and dendrites of granule cells are moderately positive for the alpha1 staining in adult rats but weakly so in neonatal rats. Higher-magnification images demonstrate large number of clusters of alpha1-subunit in the cell bodies of dentate granule cells of adult rat but rare clusters in granule cells of neonatal rats. Maturation of GABA(A) receptors in DGCs is characterized by increased number of GABA(A) receptors that are more sensitive to endogenous neurosteroid allopregnanolone, which might be related to increased expression of alpha1 subunit.
-
High frequency stimulation (HFS) of the subthalamic nucleus (STN) has been performed to reverse motor dysfunction in severe parkinsonian patients. Recent studies suggested that neural circuitry in the basal ganglia might regulate micturition function as well. In 15 adult male cats under ketamine anesthesia, in which spontaneous isovolumetric micturition reflex had been generated, we performed electrical stimulation and extracellular single unit recording in the STN. ⋯ All neurons were tonically active throughout storage/micturition cycles with storage phase predominance, with almost constant firing activities during the storage phase. In conclusion, our results showed that HFS-STN inhibited the micturition reflex and there were micturition-related neuronal firings in the STN in cats, suggesting the STN may be involved in neural control of micturition. The results also provide an implication that clinical HFS-STN may alter urinary function in parkinsonian patients.
-
Abnormal corticosteroid release is extensively associated with mood disorders. This association may result from the toxic actions of endogenous corticosteroids which can induce apoptosis of hippocampal neurons. Similarly, dexamethasone, a synthetic corticosteroid, can induce lethal and sublethal damage to rat hippocampal and striatal neurons and can result in steroid-induced psychoses in humans. ⋯ Pretreatment with oestrogen substantially attenuated the dexamethasone-induced neuronal damage. This oestrogen-induced neuronal protection was in turn virtually eliminated by giving an initial injection of tamoxifen. These results suggest, therefore, that oestrogens can protect from corticosteroid-induced neuronal damage via an oestrogen receptor-mediated process.