Neuroscience
-
S-allyl-L-cysteine (SAC), one of the organosulfur compounds found in aged garlic extract, has been shown to possess various biological effects including neurotrophic activity. In our previous experiments, we found that SAC could protect against amyloid beta-protein (Abeta)- and tunicamycin-induced cell death in differentiated PC12 cells. In the study described here, we characterized the neuronal death induced by Abeta, 4-hydroxynonenal (HNE), tunicamycin, and trophic factor deprivation, and investigated whether and how SAC could prevent this in cultured rat hippocampal neurons. ⋯ SAC also attenuated the Abeta-induced increase of intracellular reactive oxygen species in hippocampal neurons. SAC had no effect on Abeta-induced cell death in cultured cerebellar granule neurons, which was prevented by a caspase-3 inhibitor. These results suggest that SAC could protect against the neuronal cell death that is triggered by ER dysfunction in the hippocampus, and that it has no effect on neuronal cell death that is dependent upon the caspase-3 mediated pathway.
-
Comparative Study
Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes.
Honeybees can be trained to associate odorants to sucrose reward by conditioning the proboscis extension response. Using this paradigm, we have recently shown that bees can solve a side-specific task: they learn simultaneously to discriminate a reinforced odor A from a non-reinforced odor B at one antenna (A+B-) and the reversed problem at the other antenna (A-B+). Side-specific (A+B-/B+A-) conditioning is an interesting tool to measure neurophysiological changes due to olfactory learning because the same odorant is excitatory (CS+) on one brain side and inhibitory (CS-) on the opposite side. ⋯ By representing odor vectors in a virtual olfactory space whose dimensions are the responses of 23 identified glomeruli, we found that distances between odor representations on each brain side were significantly higher in conditioned than in naive bees, but only for CS+ and CS-. However, the distance between CS+ and CS- representations was equal to that of naive individuals. Our work suggests that side-specific conditioning decorrelates odor representations between AL sides but not between CS+ and CS- within one AL.
-
Comparative Study
Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice.
Hormone replacement therapy with the gonadal steroid estrogen or synthetic agents such as raloxifene, a selective estrogen receptor modulator, may affect cellular function in brains of postmenopausal women. In vitro studies suggest that 17beta estradiol and raloxifene can alter the microglial and astrocyte expression of immuno-neuronal modulators, such as cytokines, complement factors, chemokines, and other molecules involved in neuroinflammation and neurodegeneration. To directly test whether exogenous 17beta estradiol and raloxifene affect the number of glial cells in brain, C57BL/6NIA female mice aged 20-24 months received bilateral ovariectomy followed by s.c. placement of a 60-day release pellet containing 17beta estradiol (1.7 mg), raloxifene (10 mg), or placebo (cholesterol). ⋯ The results show that long-term 17beta estradiol treatment in aged female mice significantly lowered the numbers of astrocytes and microglial cells in dentate gyrus and CA1 regions compared with placebo. After long-term treatment with raloxifene, a similar reduction was observed in numbers of astrocytes and microglial cells in the hippocampal formation. These findings indicate that estrogen and selective estrogen receptor modulators can influence glial-mediated inflammatory pathways and possibly protect against age- and disease-related neuropathology.
-
Comparative Study
Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission.
Recurrent networks of neurons communicating via excitatory connections are common in the nervous system. In the absence of mechanisms to control firing (collectively termed negative feedback), these networks are likely to be bistable and unable to meaningfully encode input signals. In most recurrent circuits, negative feedback is provided by a specialized subpopulation of interneurons, but such neurons are absent from some systems, which therefore require other forms of negative feedback. ⋯ In addition, simulation revealed that neurons in networks with inhibitory contransmission fired in erratic bursts, a phenomenon observed in neurons in unparalysed tissue. Thus, either inhibitory contransmission or AHPs, or both, can allow recurrent networks of AH/Dogiel type II neurons to encode ongoing inputs in a biologically useful way. These neurons appear to be intrinsic primary afferent neurons (IPANs), which implies that the IPANs in a region act in a coordinated fashion.
-
Comparative Study
Hyperalgesia and increased neuropathic pain-like response in mice lacking galanin receptor 1 receptors.
The neuropeptide galanin may have a role in modulation of nociception, particularly after peripheral nerve injury. The effect of galanin is mediated by at least three subtypes of receptors. In the present study, we assessed the nociceptive sensitivity in mice lacking the galanin receptor 1 gene (Galr1) and the development of neuropathic pain-like behaviours after photochemically induced partial sciatic nerve ischaemic injury. ⋯ The duration of such pain-like behaviours was significantly increased in Galr1(-/-). The Galr1(-/-) mice and Galr1(+/+) mice did not differ in their recovery from deficits in toe-spread after sciatic nerve crush. The results provide some evidence for an inhibitory function for the neuropeptide galanin acting on galanin receptor 1 (GALR1) in nociception and neuropathic pain after peripheral nerve injury in mice.