Neuroscience
-
Comparative Study
Opposite behaviours in the forced swimming test are linked to differences in spatial working memory performances in the rat.
Despite consistent evidence of an association between depression and impaired memory performance, only a few studies have investigated memory processes in animal models of depression. The aim of the present study was to determine if rats selected for marked differences in their immobility response in the forced swimming test (FST, i.e. high-immobility, [HI] and low-immobility [LI] rats) exhibit differences in spatial and non-spatial memory performances. In a classic radial maze elimination task, we observed that HI rats made significantly more errors than LI rats, and their first error appeared significantly earlier. ⋯ On the other hand, performances in the two groups of animals were similar in a non-spatial task, the object recognition task. Complementary behavioral data indicate that the differences observed between the two groups are not attributable to opposite locomotor activities or to different levels of anxiety. Overall we can conclude that opposite swimming behavior in the FST could parallel some differences in cognitive performances, more specifically linked to spatial working memory.
-
Comparative Study
Anatomical and gene expression mapping of the ventral pallium in a three-dimensional model of developing human brain.
Combining gene expression data with morphological information has revolutionized developmental neuroanatomy in the last decade. Visualization and interpretation of complex images have been crucial to these advances in our understanding of mechanisms underlying early brain development, as most developmental processes are spatially oriented, in topologically invariant patterns that become overtly distorted during brain morphogenesis. It has also become clear that more powerful methodologies are needed to accommodate the increasing volume of data available and the increasingly sophisticated analyses that are required, for example analyzing anatomy and multiple gene expression patterns at individual developmental stages, or identifying and analyzing homologous structures through time and/or between species. ⋯ J Comp Neurol 424:409-438; Puelles L, Martínez S, Martínez-de-la-Torre M, Rubenstein JLR (2004) Gene maps and related histogenetic domains in the forebrain and midbrain. In: The rat nervous system, 3rd ed (Paxinos G, ed), pp 3-25. San Diego: Academic Press].
-
Comparative Study
Cortical processing of visceral and somatic stimulation: differentiating pain intensity from unpleasantness.
Visceral and somatic pain perception differs in several aspects: poor localization of visceral pain and the ability of visceral pain to be referred to somatic structures. The perception of pain intensity and affect in visceral and somatic pain syndromes is often different, with visceral pain reported as more unpleasant. To determine whether these behavioral differences are due to differences in the central processing of visceral and somatic pain, non-invasive imaging tools are required to examine the neural correlates of visceral and somatic events when the behavior has been isolated and matched for either unpleasantness or pain intensity. ⋯ Visceral stimuli induced deactivation of the perigenual cingulate bilaterally with a relatively greater activation of the right anterior insula-i.e. regions encoding affect. Somatic pain induced left dorso-lateral pre-frontal cortex and bilateral inferior parietal cortex activation i.e. regions encoding spatial orientation and assessing perceptual valence of the stimulus. We believe that the observed patterns of activation represent the differences in cortical process of interoceptive (visceral) and exteroceptive (somatic) stimuli when matched for unpleasantness.
-
Comparative Study
Effects of sleep deprivation and recovery sleep upon cell proliferation in adult rat dentate gyrus.
Numerous behavioral and environmental factors modulate the production of new cells in the adult mammalian brain. Although sleep loss has previously been shown to dramatically suppress brain cell proliferation, the effect of recovery sleep after a period of sleep deprivation is not known. Using the disk-over-water paradigm, adult male Sprague-Dawley rats were sleep deprived for 48 h. ⋯ A similar reduction in proliferation (39%) was observed in rats allowed an 8 h period of recovery sleep. In both deprivation groups, the magnitude of suppression of cell proliferation was approximately twice as large in the posterior hippocampus as it was in the anterior hippocampus. These data confirm previous results that an extended period of sleep deprivation exerts a strong suppressant effect on cell proliferation in the rat dentate gyrus, and demonstrate that this suppression of cell proliferation shows no evidence of recovery for at least 8 h following a 48 h period of sleep deprivation.
-
Review
Experimental models of traumatic brain injury: do we really need to build a better mousetrap?
Approximately 4000 human beings experience a traumatic brain injury each day in the United States ranging in severity from mild to fatal. Improvements in initial management, surgical treatment, and neurointensive care have resulted in a better prognosis for traumatic brain injury patients but, to date, there is no available pharmaceutical treatment with proven efficacy, and prevention is the major protective strategy. Many patients are left with disabling changes in cognition, motor function, and personality. ⋯ Although several clinically-relevant but different experimental models have been developed to reproduce specific characteristics of human traumatic brain injury, its heterogeneity does not allow one single model to reproduce the entire spectrum of events that may occur. The use of these models has resulted in an increased understanding of the pathophysiology of traumatic brain injury, including changes in molecular and cellular pathways and neurobehavioral outcomes. This review provides an up-to-date and critical analysis of the existing models of traumatic brain injury with a view toward guiding and improving future research endeavors.