Neuroscience
-
The aim of this study was to investigate the neurochemical mechanism underlying the effect of nicotine and dimethylphenylpiperazinium (DMPP) on 5-hydroxytryptamine (5-HT) release in the dorsal raphe nucleus and nucleus accumbens of freely behaving rats. For comparison, lobeline, cytisine and RJR-2403 were also investigated. It was found that all drugs, when infused locally, evoked an increase of 5-HT in the dorsal raphe nucleus. ⋯ In contrast, the effect of DMPP was not altered by 8-OH-DPAT, suggesting that the increases in 5-HT were independent of cell membrane depolarization. In conclusion, there are different mechanisms involved in nicotine- and DMPP-evoked increases in 5-HT. This is consistent with prior work suggesting DMPP may primarily act on 5-HT carriers.
-
Cholinergic neurons degenerate in Alzheimer's disease and dementia and neuroprotective substances are of high interest to counteract this cell death. The aim of the present study was to test the effect of urea and the nitric oxide synthetase inhibitor l-thiocitrulline on the survival of cholinergic neurons. Organotypic brain slices of the basal nucleus of Meynert were cultured for 2 weeks in the presence of 1-100 microM urea with or without NGF or other growth factors or with or without 1-10 microM of the NOS inhibitor L-thiocitrulline. ⋯ NGF as well as urea did not stimulate expression of the enzyme choline acetyltransferase pointing to survival promoting effects. Urea did not modulate the NGF binding in PC12 cells indicating that this effect was indirect. It is concluded that urea may play a role as an indirect survival promoting molecule possibly involving the nitric oxide pathway.
-
3-Hydroxyglutaric acid (3HGA) accumulates in the inherited neurometabolic disorder known as glutaryl-CoA dehydrogenase deficiency. The disease is clinically characterized by severe neurological symptoms, frontotemporal atrophy and striatum degeneration. Because of the pathophysiology of the brain damage in glutaryl-CoA dehydrogenase deficiency is not completed clear, we investigated the in vitro effect of 3HGA (0.01-5.0mM) on critical enzyme activities of energy metabolism, including the respiratory chain complexes I-V, creatine kinase isoforms and Na(+),K(+)-ATPase in cerebral cortex and striatum from 30-day-old rats. ⋯ Since 3HGA stimulated oxygen consumption in state IV and compromised ATP formation, it can be presumed that this organic acid might act as an endogenous uncoupler of mitochondria respiration. Finally, we observed that 3HGA changed C6 cell morphology from a round flat to a spindle-differentiated shape, but did not alter cell viability neither induced apoptosis. The data provide evidence that 3HGA provokes a moderate impairment of brain energy metabolism and do not support the view that 3HGA-induced energy failure would solely explain the characteristic brain degeneration observed in glutaryl-CoA dehydrogenase deficiency patients.
-
Epilepsy may result from altered transmission of the principal inhibitory transmitter GABA in the brain. Using in situ hybridization in two animal models of epileptogenesis, we investigated changes in the expression of nine major GABA(A) receptor subunits (alpha1, alpha2, alpha4, alpha5, beta1-beta3, gamma2 and delta) and of the GABA(B) receptor species GABA(B)R1a, GABA(B)R1b and GABA(B)R2 in 1) hippocampal kindling and 2) epilepsy following electrically-induced status epilepticus (SE). Hippocampal kindling triggers a decrease in seizure threshold without producing spontaneous seizures and hippocampal damage, whereas the SE model is characterized by spontaneous seizures and hippocampal damage. ⋯ The observed changes suggest substantial and cell specific rearrangement of GABA receptors. Lasting downregulation of subunits delta and alpha5 in granule cells and transient decreases in subunit alpha2 and beta1-3 mRNA levels in cornu ammonis 3 pyramidal cells are suggestive of impaired GABA(A) receptor-mediated inhibition. Persistent upregulation of subunits beta1-3 and gamma2 of the GABA(A) receptor and of GABA(B)R2 mRNA in granule cells, however, may result in activation of compensatory anticonvulsant mechanisms.
-
It is unknown whether the amyloid beta-peptide (Abeta), a principal component found in extracellular neuritic plaques in the brain of patients with Alzheimer's disease (AD), is capable of altering adenylyl cyclase (AC) activity and the somatostatin (SRIF) receptor-effector system in the cerebral cortex of the patients. Therefore, the objective of this study was to investigate the effect of the beta fragment, beta (25-35), on AC activity and the somatostatinergic system in the rat frontoparietal cortex. A single dose of beta (25-35) (10microg) injected intracerebroventricularly significantly decreased the density of SRIF receptors (27.4%) and increased their affinity (32.2%) in the frontoparietal cortex. ⋯ Continuous infusion of Abeta (25-35) had no effect on Gialpha1, Gialpha2 or Gialpha3 levels in membranes from frontal and parietal cortex. However, this treatment caused a decrease in SRIF-like immunoreactivity content in the parietal (38.9%) and frontal (20.4%) cortex. These results suggest that Abeta might be involved in the alterations of somatostatinergic system reported in AD.