Neuroscience
-
CNS activity is generally coupled to the vigilance state, being primarily active during wakefulness and primarily inactive during deep sleep. During periods of high neuronal activity, a significant volume of oxygen is used to maintain neuronal membrane potentials, which subsequently produces cytotoxic reactive oxygen species (ROS). Glutathione, a major endogenous antioxidant, is an important factor protecting against ROS-mediated neuronal degeneration. ⋯ Indeed, Ca2+ release from mitochondria and delayed-onset Ca2+ influx via N-methyl-D-aspartate receptors was visualized during peroxide exposure using Ca2+ indicator proteins (YC-2.1 and mitochondrial-targeted Pericam) expressed in organotypic cultures of the POAH. In the in vitro models, t-butyl-hydroperoxide (50 microM) causes dendritic swelling followed by the intracellular Ca2+ mobilization, and D-AP5 (100 microM) or glutathione (500 microM) inhibited t-butyl-hydroperoxide-induced intracellular Ca2+ mobilization and protected POAH neurons from oxidative stress. These data suggest that low-level subcortical oxidation under the control of an antioxidant system may trigger sleep via the Ca(2+)-dependent release of sleep-inducing neuromodulators in the POAH, and thus we propose that a moderate increase of ROS during wakefulness in the neuronal circuits regulating sleep may be an initial trigger in sleep induction.
-
GABA(B) receptors are believed to play a role in rhythmic activity in the mammalian brain. The aim of our study was to examine the presynaptic and postsynaptic locations of these receptors in the medial septal diagonal band area (MS/DB), an area known to pace the hippocampus theta rhythm. Whole-cell patch recordings were made from parasagittal MS/DB slices obtained from the 16-25 day rat. ⋯ Baclofen, also at a concentration too low to elicit postsynaptic activity, reduced the frequencies and amplitudes of spontaneous IPSCs and EPSCs recorded in the presence of 200-400 nM kainate. Rhythmic compound IPSCs at theta frequencies were recorded under these conditions in some neurons, and these rhythmic compound IPSCs were disrupted by the activation but not by the inhibition of GABA(B) receptors. These results suggest that GABA(B) receptors modulate rather than generate rhythmic activity in the MS/DB, and that this modulatory effect occurs via receptors located on presynaptic terminals.
-
Environmental synchronization of the endogenous mammalian circadian rhythm involves glutamatergic and GABAergic neurotransmission within the hypothalamic suprachiasmatic nucleus (SCN). The neuropeptide nociceptin/orphanin FQ (N/OFQ) inhibits light-induced phase shifts, evokes K(+)-currents and reduces the intracellular Ca(2+) concentration in SCN neurons. Since these effects are consistent with a modulatory role for N/OFQ on synaptic transmission in the SCN, we examined the effects of N/OFQ on evoked and spontaneous excitatory and inhibitory currents in the SCN. ⋯ However, N/OFQ had no effect on currents activated by muscimol application or on the amplitude of miniature IPSC (mIPSC) and significantly reduced the mIPSC frequency consistent with an inhibition of GABA release downstream from Ca(2+) entry. Finally, N/OFQ inhibited the paired-pulse depression observed in SCN GABAergic synapses consistent with a presynaptic mechanism of action. Together these results suggest a widespread modulatory role for N/OFQ on the synaptic transmission in the SCN.
-
The role of corticotropin-releasing factor in autonomic regulation of heart rate, heart rate variability and behavior responses was investigated in two genetic mouse models: corticotropin-releasing factor receptor 1-deficient mice, and corticotropin-releasing factor-transgenic mice overexpressing corticotropin-releasing factor. Heart rate was recorded by radio-telemetry during novelty exposure and auditory fear conditioning. Locomotor activity and freezing served as behavioral indices. ⋯ The resiliency of behavioral and cardiovascular patterns elevation argues against the involvement of corticotropin-releasing factor receptor 1 in acute emotional regulation on these two functional levels despite an absent corticosterone elevation in corticotropin-releasing factor receptor 1-deficient mice. It is hypothesized that the lack of a conditioned heart rate response in corticotropin-releasing factor-transgenic mice is attributable to an impairment of cognitive function. The results are compared with those of corticotropin-releasing factor receptor 2-deficient mice, and the role of the corticotropin-releasing factor system in cardiovascular regulation is discussed.
-
Comparative Study
Evidence that peripheral rather than intracranial thermal signals induce thermoregulation.
Numerous effector mechanisms have been discovered, which change body temperature and thus serve to maintain the thermal integrity of homeothermic animals. These mechanisms are driven by thermal signals that are processed by neurons in the hypothalamic preoptic area. To keep a tight control over body temperature, these neurons have to receive accurate thermal information. ⋯ Since the brain temperature did not decrease, it is unlikely that intracranial thermoreceptors are involved in the transmission of "cold" thermal signal to induce thermoregulation. At 30 min of cold exposure, neurons in all known thermoregulatory areas (like the ventrolateral part of the medial preoptic nucleus, the lateral retrochiasmatic area, the lateral parabrachial nucleus and the peritrigeminal nucleus) were already maximally activated. These observations clearly indicate that the activation of neurons in the preoptic and several other thermoregulatory nuclei is induced in vivo by thermal signals originating in the periphery, and not in the CNS.