Neuroscience
-
Comparative Study
Time-course expression of CNS inflammatory, neurodegenerative tissue repair markers and metallothioneins during experimental autoimmune encephalomyelitis.
Experimental autoimmune encephalomyelitis (EAE) is an animal model for multiple sclerosis (MS). EAE and MS are characterized by CNS inflammation, demyelination and neurodegeneration. The inflammatory response occurring within the CNS leads to glial activation, dysfunction and death, as well as axonal damage and neurological deficit. ⋯ Interestingly, we found two marker expression profiles. In the first, marker expression increased as clinical signs worsened and reverted to baseline expression during recovery; in the second, marker expression increased at a later point during relapse, peaked at highest clinical score, and remained elevated throughout recovery. Of note, metallothionein expression was found to be related to the second profile, which would suggest that metallothionein proteins are implicated in the clinical recovery of EAE and perhaps these antioxidant proteins may provide therapeutic benefits in MS.
-
Comparative Study
Selective serotonin reuptake inhibitor treatment of early postnatal mice reverses their prenatal stress-induced brain dysfunction.
Prenatal stress has long-lasting effects on cognitive function and on the hypothalamic-pituitary-adrenal response to stress. We previously reported that the serotonin concentration and synaptic density in the hippocampus were reduced following prenatal stress [Int J Dev Neurosci 16 (1998) 209]. ⋯ What we found was that the oral administration of a selective serotonin reuptake inhibitor to prenatally stressed mice during postnatal weeks 1-3 but not 6-8 normalized their corticosterone response to stress, serotonin turnover in the hippocampus, and density of dendritic spines and synapses in the hippocampal CA3 region. Concomitantly, such treatment partially restored their ability to learn spatial information.
-
The corticospinal tract is widely used to study regeneration and is essential for voluntary movements in humans. In young rats, corticospinal axons on the uninjured side sprout and grow into the denervated side. Neurotrophin-3 (NT-3) induces such crossed collateral sprouting in adults. ⋯ NT-3 caused sprouting of local calcitonin gene-related peptide-positive fibers. These results suggest that NT-3 reduces collateral sprouting of spared corticospinal axons from within the denervated regions, possibly because of the injury environment or by increasing sprouting of local afferents. They identify an unexpected context-dependent outgrowth inhibitory effect of NT-3.
-
mKirre, a mammalian homolog of the Drosophila kirre, is expressed in bone marrow stromal cells and the brain. Although mKirre has been shown to support the hematopoietic stem cells, little is known about the function of mKirre in the brain. In the present study, to gain insights into the function of mKirre, we investigated the expression pattern of mKirre gene in the developing and adult mouse brain using in situ hybridization. ⋯ After birth, we could first observe high expression of mKirre mRNA in the glomerular and mitral layers of the olfactory bulb, the cortical plate of the neocortex, the cochlear nucleus, and the molecular and granule cell layers of the cerebellum. In the hippocampus, its gene expression was first observed in the dentate gyrus at postnatal day 7. The spatiotemporal expression pattern of mKirre mRNA suggests important roles of mKirre in later developmental processes, especially the synapse formation.
-
Although neurokinin-1 receptor (NK-1)-bearing neurons are distributed in lamina I of the trigeminal caudal nucleus (Vc) and constitute major projection neurons, little is known about their fundamental role(s) in nociceptive processing. This study examines the effect of intra cisterna magna injection of substance P (SP) conjugated to saporin (SP-Sap; 5 microM, 5 microl) [with/without systemic administration of bicuculline] on c-Fos expression in the trigeminal sensory nucleus (TSN) induced 2 h after 10 min repetitive electrical stimulation of the trigeminal ganglion (TG) at high intensity (1.0 mA, 5 Hz, 5 ms) in the urethane-anesthetized rat. In the SP-Sap-treated rats, the numbers of NK-1-immunopositive neurons in laminae I and III of the Vc decreased compared with rats similarly pretreated with saline (Sal; 5 microl) or blank-saporin (Bl-Sap; 5 microM, 5 microl). ⋯ In contrast, high intensity stimulation induced less c-Fos-immunopositive neurons in the VcI/II and Vo of rats treated with SP-Sap compared with those in Sal- or Bl-Sap-treated controls. In SP-Sap-treated rats preadministered with bicuculline, the numbers of c-Fos-immunopositive neurons in the VcI/II and Vo were increased compared with the SP-Sap-treated rats preadministered with Sal. These results suggest that NK-1-immunopositive neurons in laminae I and III of Vc play a pivotal role in the nociceptive specific processing in the TSN through GABA(A) receptors.