Neuroscience
-
This study examined whether or not the properties of cutaneous nociceptive fibers are altered in the neuropathic state by comparing lumbars 5 and 6 spinal nerve ligation (SNL) rats with sham-operated controls. The rats with the unilateral SNL developed mechanical allodynia in the ipsilateral hind limb, whereas the sham group did not. Two to 5 weeks after the neuropathic or sham surgery, rats were subjected to single fiber-recording experiments to examine the properties of afferent fibers in the sural and plantar nerves. ⋯ However, the magnitude of the responses of C-fibers to the suprathreshold intensity of the heat stimulus in the neuropathic group was not different from that in the sham group. These results suggest that after a partial peripheral nerve injury, the nociceptors on the skin supplied by an uninjured nerve become sensitized to both mechanical and heat stimuli. This nociceptor sensitization can contribute to neuropathic pain.
-
Comparative Study
Deletion of presynaptic adenosine A1 receptors impairs the recovery of synaptic transmission after hypoxia.
Adenosine protects neurons during hypoxia by inhibiting excitatory synaptic transmission and preventing NMDA receptor activation. Using an adeno-associated viral (AAV) vector containing Cre recombinase, we have focally deleted adenosine A(1) receptors in specific hippocampal regions of adult mice. Recently, we found that deletion of A(1) receptors in the CA1 area blocks the postsynaptic responses to adenosine in CA1 pyramidal neurons, and deletion of A(1) receptors in CA3 neurons abolishes the presynaptic effects of adenosine on the Schaffer collateral input [J Neurosci 23 (2003) 5762]. ⋯ Focal deletion of the presynaptic A(1) receptors on the Schaffer collateral input slowed the depression of the fEPSPs in response to hypoxia and impaired the recovery of the fEPSPs after hypoxia. Delayed responses to hypoxia linearly correlated with impaired recovery. These findings provide direct evidence that the neuroprotective role of adenosine during hypoxia depends on the rapid inhibition of synaptic transmission by the activation of presynaptic A(1) receptors.
-
Comparative Study
Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease.
Recent data suggest novel functional roles for cerebellar involvement in a number of neurologic diseases. Function of cerebellar neurons is known to be modulated by norepinephrine and adrenergic receptors. The distribution of adrenergic receptor subtypes has been described in experimental animals, but corroboration of such studies in the human cerebellum, necessary for drug treatment, is still lacking. ⋯ Granule and Golgi cells express high levels of alpha 2a and alpha 2b adrenergic receptor mRNAs. These data contribute new information regarding specific location of adrenergic receptor subtypes in human cerebellar neurons. We discuss our observations in terms of possible modulatory roles of adrenergic receptor subtypes in cerebellar neurons responding to sensory and autonomic input signals, and review species differences in cerebellar adrenergic receptor expression.
-
Comparative Study
Response properties of dorsal root reflexes in cutaneous C fibers before and after intradermal capsaicin injection in rats.
C fiber dorsal root reflexes (DRR) contribute to neurogenic inflammation and possibly also to touch-evoked pain (allodynia) induced by intradermal capsaicin. The responses of C fibers in the sural nerve to graded mechanical stimuli before and following intradermal capsaicin were studied in 39 adult male rats. Two-thirds of 111 fibers were without spontaneous activity, while the remaining fibers averaged 1.41+/-0.25 spontaneous antidromic spikes per second. ⋯ Mechanical stimuli re-applied following the resumption of spontaneous discharges failed to produce any response. Spontaneous DRRs were increased by topical application of 1 mM beta-alanine (a competitive antagonist for GABA transporters) and abolished by ipsilateral spinal nerve L5 lesion, verifying antidromic origin. The role of C fiber DRRs in normal sensory transmission and during hyperalgesia is discussed.
-
Comparative Study
Estrogen modifies stress response of catecholamine biosynthetic enzyme genes and cardiovascular system in ovariectomized female rats.
Estrogen is likely involved in the gender specific differences in coping with stress. Activation of catecholamine (CA) biosynthetic enzyme gene expression in central and peripheral CA systems plays a key role in response to stress and in regulation of the cardiovascular system. Here we examined whether estradiol can modulate response of hypothalamic-pituitary-adrenal axis (HPA), gene expression of enzymes related to CA biosynthesis in several noradrenergic locations, tetrahydrobiopterin (BH4) concentration and blood pressure (BP) in response to immobilization stress (IMO) of ovariectomized female rats. ⋯ The elevation of BP in response to single or repeated restraint stress was sustained during 2 h in controls and reduced after 70 min stress in EB treated rats. One month after withdrawal of EB treatment, the BP response to restraint was similar to that of rats which never received EB. The results demonstrate that estrogen can modulate responses to stress affecting HPA axis, CA biosynthesis, in central and peripheral noradrenergic systems, and BP.