Neuroscience
-
Comparative Study
Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development.
Dnmt3a and Dnmt3b, which are known as functional de novo methyltransferases, are responsible for creating genomic methylation patterns during mammalian development. Recently, we have shown that specific expression of Dnmt3b in epiblast, embryonic ectoderm, hematopoietic progenitor cells and spermatogonia cells is followed by Dnmt3a expression (Watanabe D, Suetake I, Tada T, Tajima S (2002) Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118:187-190; Watanabe D, Suetake I, Tajima S, Hanaoka K (2004) Expression of Dnmt3b in mouse hematopoietic progenitor cells and spermatogonia at specific stages. ⋯ Dnmt3a is expressed in postmitotic young neurons following the Dnmt3b expression. Dnmt3a may be required for the establishment of tissue-specific methylation patterns of the genome. The coordinated expression of de novo methyltransferases from Dnmt3b to Dnmt3a suggests conserved mechanisms of de novo methylation of the genome and different functions for Dnmt3b and Dnmt3a during progenitor cell development.
-
Osmoprotective genes are tonicity-activated genes involved in cellular osmoadaptation to hypertonicity and considered to be regulated by a specific transcription factor called tonicity-responsive enhancer-binding protein (TonEBP). In the brain we had previously established that TonEBP was expressed and tonicity-induced in neurons only. Here we have compared in various brain regions of rats subjected to systemic hypertonicity, the cellular expression of TonEBP through immunocytochemistry and the cellular expression of osmoprotective genes, namely aldose reductase (AR), sodium-dependent myo-inositol transporter (SMIT), betaine/GABA transporter (BGT1) and taurine transporter (TauT), by in situ hybridization using non-radioactive digoxigenin-labeled riboprobes. ⋯ The present work reveals large discrepancies between the cellular distribution of the tonicity-induced expression of osmoprotective genes and that of their regulatory transactivator TonEBP. Depending on the cell subsets and the osmoprotective genes, TonEBP may appear insufficient or conversely unnecessary for the tonicity-induced activation of an osmoprotective gene. Altogether our results show that brain cells, even from the same class, activate distinct osmoprotective genes through distinct activation processes to adapt to hypertonicity.
-
Activation of D1-like (D1, D5) or D2-like (D1, D3, D4) dopamine receptors in the nucleus accumbens shell is sufficient to reinstate cocaine-seeking behavior in rats. The goal of these experiments was to assess whether cooperative activation of D1-like and D2-like dopamine receptors in the accumbens shell is required to promote cocaine reinstatement. Rats were initially trained to self-administer cocaine (0.25 mg, i.v.) using a fixed-ratio schedule of reinforcement for approximately 21 days. ⋯ Similarly, administration of the selective D1/5 dopamine receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390) (1.0 microg) into the nucleus accumbens shell prior to quinpirole (3.0 microg) blocked reinstatement of drug-seeking behavior elicited by this D2/3 dopamine receptor agonist. Moreover, intra-accumbal shell co-administration of subthreshold doses of quinpirole (1.5 microg) and SKF-81297 (0.1 microg) promoted cocaine-seeking behavior. Collectively, these results indicate that cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is necessary to reinstate cocaine seeking in rats.