Neuroscience
-
Neuropeptide W-23 and neuropeptide B are each an endogenous ligand of GPR7. GPR7 mRNA has been detected in regions of the cortex, the hippocampus, the hypothalamus and the spinal cord in the rat. GPR7 receptor has structural features in common with both opioid and somatostatin receptors. ⋯ The effect of intrathecal administration of either 10 microg of neuropeptide W-23 or 10 microg of neuropeptide B was not antagonized by i.p. injection of 1 mg/kg of naloxone. Immunohistochemical examination revealed that neuropeptide W-23 was expressed mainly in the small- to medium-sized neuronal profiles in the dorsal root ganglion and that partial sciatic nerve injury decreased the percentage of neuropeptide W-23-like immunoreactivity positive neuronal profiles that were labeled by IB4. These data suggest that neuropeptide W-23 is involved in the nociceptive transmission in spinal cord and that both spinally-applied neuropeptide W-23 and spinally-applied neuropeptide B produce anti-allodynic effects in the partial sciatic nerve ligation model in rat.
-
Mutations in the SOD1 gene are associated with familial amyotrophic lateral sclerosis. The mechanisms by which these mutations lead to cell loss within the spinal cord ventral horns are unknown. In the present report we used the G93A transgenic mouse model of amyotrophic lateral sclerosis to develop and characterize an in vitro tool for the investigation of subtle alterations of spinal tissue prior to frank neuronal degeneration. ⋯ However, a significantly different ratio between inhibitory and excitatory synapses was present in G93A cultures, when compared with wild type ones, suggesting the expression of subtle synaptic dysfunction in G93A cultured tissue. When compared with controls, G93A motoneurons exhibited increased vulnerability to AMPA glutamate receptor-mediated excitotoxic stress prior to clear disease appearance. This in vitro disease model may thus represent a valuable tool to test early mechanisms contributing to motoneuron degeneration and potential therapeutic molecular interventions.
-
Previous studies have demonstrated that macromolecular synthesis in the brain is modulated in association with the occurrence of sleep and wakefulness. Similarly, the spectral composition of electroencephalographic activity that occurs during sleep is dependent on the duration of prior wakefulness. Since this homeostatic relationship between wake and sleep is highly conserved across mammalian species, genes that are truly involved in the electroencephalographic response to sleep deprivation might be expected to be conserved across mammalian species. ⋯ Using Affymetrix Neurobiology U34 GeneChips , we also screened the rat cerebral cortex, basal forebrain, and hypothalamus for other genes whose expression may be modulated by sleep deprivation or recovery sleep. We find that the response of the basal forebrain to sleep deprivation is more similar to that of the cerebral cortex than to the hypothalamus. Together, these results suggest that sleep-dependent changes in gene expression in the cerebral cortex are similar across rodent species and therefore may underlie sleep history-dependent changes in sleep electroencephalographic activity.
-
Comparative Study
Trophic factor modulation of cocaine- and amphetamine-regulated transcript peptide expression in explant cultured guinea-pig cardiac neurons.
The present study investigated the influence of trophic factors on the expression of cocaine- and amphetamine-regulated transcript peptide (CARTp) in guinea-pig cardiac ganglia maintained in explant culture. In acutely isolated cardiac ganglia preparations, <1% of the cholinergic cardiac neurons exhibited CARTp immunoreactivity. In contrast, this number increased to >25% of the cardiac neurons after 72 h in explant culture. ⋯ Cardiac neurons exhibited immunoreactivity to the neurturin receptor GFRalpha2 whereas non-neural cells preferentially exhibited immunoreactivity to the glial-derived neurotrophic factor receptor GFRalpha1 and neurturin transcripts were detected in cardiac tissue extracts. We hypothesize that a target-derived inhibitory factor, very likely neurturin, is a critical factor suppressing the expression of CARTp in guinea-pig cardiac neurons. These observations contrast with those reported in sympathetic neurons that suggest up-regulation of trophic factors after axotomy or during explant culture is a key factor contributing to the up-regulation of many neuropeptides.