Neuroscience
-
Previous studies have indicated that thalamic nucleus submedius is involved in opioid-mediated antinociception in tail flick test and formalin test. The current study examined the effects of opioids microinjected into the thalamic nucleus submedius on the allodynia developed in neuropathic pain model rats, and determined the roles of different subtypes of opioid receptors in the thalamic nucleus submedius opioid-evoked antiallodynia. The allodynic behaviors induced by L5/L6 spinal nerve ligation were assessed by mechanical (von Frey filaments) and cold (4 degrees C plate) stimuli. ⋯ However, the [D-Ala2, D-Leu5]-enkephalin-evoked antiallodynic effects were not influenced by the selective delta-opioid receptor antagonist naltrindole (5.0 microg). Microinjection of the selective kappa-receptor agonist spiradoline mesylate salt (100 microg) into the thalamic nucleus submedius failed to alter the allodynia induced by spinal nerve ligation. These results suggest that the thalamic nucleus submedius is involved in opioid-evoked antiallodynia which is mediated by mu- but not delta- and kappa-opioid receptor in the neuropathic pain model rats.
-
Comparative Study
Fatty acids differentially affect serotonin receptor and transporter binding in the rat brain.
The aim of this study was to examine the influence of different fat diets on serotonin receptor and transporter binding. Male Sprague-Dawley rats were fed a diet of either high saturated fat, omega-6 polyunsaturated fatty acid, omega-3 polyunsaturated fatty acid or low fat (control) for eight weeks. ⋯ Overall, the omega-6 polyunsaturated fatty acid diet exerted the most influence on serotonin receptor and transporter binding. These results may be of importance in relation to neuropsychiatric diseases such as schizophrenia, where associations between altered fatty acid levels and the serotonergic system have been made.
-
Adeno-associated virus (AAV) vectors have gained a preeminent position in the field of gene delivery to the normal brain through their ability to achieve extensive transduction of neurons and to mediate long-term gene expression with no apparent toxicity. In adult animals direct infusion of AAV vectors into the brain parenchyma results in highly efficient transduction of target structures. However AAV-mediated global delivery to the adult brain has been an elusive goal. ⋯ AAV8 proved to be more efficient than AAV1 or AAV2 vectors for gene delivery to all of the structures analyzed, including the cerebral cortex, hippocampus, olfactory bulb, and cerebellum. Moreover the intensity of gene expression, assessed using a microarray reader, was considerably higher for AAV8 in all structures analyzed. In conclusion, the enhanced transduction achieved by AAV8 compared with AAV1 and AAV2 indicates that AAV8 is the superior serotype for gene delivery to the CNS.
-
The localization of the neuropeptide tyrosine Y1 receptor was studied with immunohistochemistry in parasagittal and transverse, free-floating sections of the rat lumbar spinal cord. At least seven distinct Y1 receptor-positive populations could tentatively be recognized: Type 1) abundant small, fusiform Y1 receptor-positive neurons in laminae I-II, producing a profuse neuropil; Type 2) Y1 receptor-positive projection neurons in lamina I; Type 3) small Y1 receptor-positive neurons in lamina III, similar to Type 1 neurons, but less densely packed; Type 4) a number of large, multipolar Y1 receptor-positive neurons in the border area between laminae III-IV, with dendrites projecting toward laminae I-II; Type 5) a considerable number of large, multipolar Y1 receptor-positive neurons in laminae V-VI; Type 6) many large Y1 receptor-positive neurons around the central canal (area X); and Type 7) a small number of large Y1 receptor-positive neurons in the medial aspect of the ventral horns (lamina VIII). Many of the neurons present in laminae V-VI and area X produce craniocaudal processes extending for several hundred micrometers. ⋯ J Neurosci 19:2637-2646]. If so, neuropeptide tyrosine could have an antinociceptive action not only via Y1 receptor-positive interneurons (Type 1) but also projection neurons. The present results show neuropeptide tyrosine-sensitive neuron populations virtually in all parts of the lumbar spinal cord, suggesting a role for neuropeptide tyrosine signaling in many spinal functions, including pain.
-
Fear-conditioned analgesia is an important survival response which is expressed upon re-exposure to a context previously paired with a noxious stimulus. The aim of the present study was to characterize further the behavioral, monoaminergic and hypothalamo-pituitary-adrenal axis alterations associated with expression of fear-conditioned analgesia. Rats which had received footshock conditioning 24 h earlier, exhibited reduced formalin-evoked nociceptive behavior upon re-exposure to the footshock chamber, compared with non-footshocked formalin-treated rats. ⋯ These data extend behavioral characterization of the phenomenon of fear-conditioned analgesia and suggest that measurement of ultrasound emission may be used as an ethologically relevant index of the defense response during fear-conditioned analgesia. Ultrasonic vocalization may also be a useful behavioral output to aid separation of nociception and aversion. The data provide evidence for discrete alterations in dopaminergic activity in the periaqueductal gray and thalamus and for altered hypothalamo-pituitary-adrenal axis activity following expression of defensive behavior.