Neuroscience
-
Cannabinoids have profound effects on synaptic function and behavior. Of the two cloned cannabinoid receptors, cannabinoid receptor 1 (CB1) is widely distributed in the CNS and accounts for most of the neurological effects of cannabinoids, while cannabinoid receptor 2 (CB2) expression in the CNS is very limited. The presence of additional receptors [i.e. cannabinoid receptor 3 (CB3)] is suggested by growing evidence of cannabinoid effects that are not mediated by CB1 or CB2. ⋯ Eur J Neurosci 22:2387-2391]. Our results strongly suggest that cannabinoid-induced suppression of the Sch-CA1 synapse is mediated by CB1. Non-canonical cannabinoid receptors do not seem to play a major role in inhibiting transmitter release at this synapse.
-
Trauma to the conus medullaris and cauda equina may result in autonomic, sensory, and motor dysfunctions. We have previously developed a rat model of cauda equina injury, where a lumbosacral ventral root avulsion resulted in a progressive and parallel death of motoneurons and preganglionic parasympathetic neurons, which are important for i.e. bladder control. Here, we report that an acute implantation of an avulsed ventral root into the rat conus medullaris protects preganglionic parasympathetic neurons and motoneurons from cell death as well as promotes axonal regeneration into the implanted root at 6 weeks post-implantation. ⋯ Light and electron microscopic studies of the implanted ventral roots demonstrated a large number of both myelinated axons (79+/-13% of the number of myelinated axons in corresponding control ventral roots) and unmyelinated axons. Although the diameter of myelinated axons in the implanted roots was significantly smaller than that of control roots, the degree of myelination was appropriate for the axonal size, suggesting normal conduction properties. Our results show that preganglionic parasympathetic neurons have the same ability as motoneurons to survive and reinnervate implanted roots, a prerequisite for successful therapeutic strategies for autonomic control in selected patients with acute conus medullaris and cauda equina injuries.
-
Adeno-associated virus (AAV) vectors have gained a preeminent position in the field of gene delivery to the normal brain through their ability to achieve extensive transduction of neurons and to mediate long-term gene expression with no apparent toxicity. In adult animals direct infusion of AAV vectors into the brain parenchyma results in highly efficient transduction of target structures. However AAV-mediated global delivery to the adult brain has been an elusive goal. ⋯ AAV8 proved to be more efficient than AAV1 or AAV2 vectors for gene delivery to all of the structures analyzed, including the cerebral cortex, hippocampus, olfactory bulb, and cerebellum. Moreover the intensity of gene expression, assessed using a microarray reader, was considerably higher for AAV8 in all structures analyzed. In conclusion, the enhanced transduction achieved by AAV8 compared with AAV1 and AAV2 indicates that AAV8 is the superior serotype for gene delivery to the CNS.
-
The angiotensin 4 receptor (AT4) subtype is heavily distributed in the dentate gyrus and CA1-CA3 subfields of the hippocampus. Neuronal pathways connecting these subfields are believed to be activated during learning and memory processing. ur laboratory previously demonstrated that application of the AT4 agonist, Norleucine1-angiotensin IV, enhanced baseline synaptic transmission and long-term potentiation, whereas perfusion with the AT4 antagonist, Norleucine1-Leu3-psi(CH2-NH2)3-4-angiotensin IV disrupted long-term potentiation stabilization in area CA1. The objective of the present study was to identify the mechanism(s) responsible for Norleucine1-angiotensin IV-induced increase in hippocampal long-term potentiation. ⋯ In support of this notion the application of Nle1-angiotensin IV to cultured rat hippocampal neurons resulted in increased intracellular calcium derived exclusively from extracellular sources. Consistent with these observations Nle1-angiotensin IV was capable of augmenting the uptake of 45Ca2+ into rat hippocampal slices. Taken together, these data indicate that increased calcium influx through postsynaptic calcium channels contribute to Norleucine1-angiotensin IV-induced enhancement of long-term potentiation.
-
Changes in the signaling of wide dynamic range neurons and the expression of glutamate transporters in the lumbar spinal dorsal horn of rats with Taxol-induced hyperalgesia are detailed in this report. Deep spinal lamina neurons have significantly increased spontaneous activity and after-discharges to noxious mechanical stimuli, increased responses to both skin heating and cooling, and increased after-discharges and abnormal windup to transcutaneous electrical stimuli. ⋯ These results suggest a state of increased excitability develops in spinal pain-signaling neurons as a consequence of decreased glutamate clearance. These changes in dorsal horn neurobiology likely in turn contribute to the hyper-responsiveness to sensory stimuli seen in animals treated with Taxol and may play a role in the pain seen in cancer patients receiving Taxol.