Neuroscience
-
Hematopoietic prostaglandin D synthase is a key enzyme in synthesis of prostaglandin D. Hematopoietic prostaglandin D synthase is expressed in microglia of the developing mouse brain. This study determined the serial changes and cellular localization of hematopoietic prostaglandin D synthase, and its role in cerebral ischemia/reperfusion injury using C57BL/6 mice (n=84) and bone marrow chimera mice (n=16). ⋯ Until 72 h postreperfusion, many enhanced green fluorescent protein-positive cells were negative for hematopoietic prostaglandin D synthase, but the number of hematopoietic prostaglandin D synthase-enhanced green fluorescent protein coexpressing cells increased significantly at 5-7 days after reperfusion. Our results indicate that hematopoietic prostaglandin D synthase is mainly produced by endogenous microglia until 72 h after reperfusion, but at 7 days after reperfusion, it is also produced by migrating bone marrow/blood-derived macrophages in the ischemic brain tissue. We speculate that hematopoietic prostaglandin D synthase in the brain has different functions during early and late phases of ischemia.
-
We characterized bradykinin (BK)-induced changes in the intracellular Ca(2+) concentration ([Ca(2+)]i) and membrane potential in cultured rat myenteric neurons using ratiometric Ca(2+) imaging with fura-2 and the whole-cell patch-clamp technique, respectively. BK evoked a dose-dependent increase of [Ca(2+)]i that was abolished by HOE 140, a B2 receptor antagonist but not by [Lys-des-Arg(9)]-BK, a B1 receptor antagonist. [Lys-des-Arg(9)]-HOE140, a B1 receptor agonist, failed to cause a [Ca(2+)]i response. Double staining with antibodies against the B2 receptor together with PGP9.5 or S100 indicated that B2 receptors were expressed in neurons and glial cells. ⋯ BK evoked a slow and sustained depolarization in myenteric neurons, which was sensitive to indomethacin. These results indicated that BK caused a [Ca(2+)]i increase and depolarization in rat myenteric neurons through the activation of B2 receptors, which was partly associated with PGE(2) released from glial cells in response to BK. It is suggested that a neuron-glial interaction plays an important role in the effect of BK in the rat myenteric plexus.
-
Cocaine-associated cues acquire incentive motivational effects that manifest as craving in humans and cocaine-seeking behavior in rats. We have reported an increase in neuronal activation in rats, measured by Fos protein expression, in various limbic and cortical regions following exposure to cocaine-associated cues. This study examined whether the conditioned neuronal activation involves glutamate AMPA receptors by measuring coexpression of Fos and AMPA glutamate receptor subunits (GluR1, GluR2/3, or GluR4). ⋯ The No Extinction group exhibited increases in cocaine-seeking behavior and Fos expression in limbic and cortical regions relative to the Extinction group. A large number of Fos immunoreactive cells coexpressed GluR1, GluR2/3, and GluR4, suggesting that an action of glutamate at AMPA receptors may in part drive cue-elicited Fos expression. Importantly, there was an increase in the percentage of cells colabeled with Fos and GluR1 in the anterior cingulate and nucleus accumbens shell and cells colabeled with Fos and GluR4 in the infralimbic cortex, suggesting that within these regions, a greater, and perhaps even different, population of AMPA receptor subunit-expressing neurons is activated in rats engaged in cocaine-seeking behavior.
-
Excessive glutamate receptor stimulation can produce rapid disruption of dendritic morphology, including dendritic beading. We recently showed that transient N-methyl-d-aspartic acid (NMDA) exposure resulted in irreversible loss of synaptic function and loss of microtubule associated protein 2 (MAP2) from apical dendrites. The present study examined the initiation and progression of dendritic injury in mouse hippocampal slices following this excitotoxic stimulus. ⋯ Under these conditions, beading appeared predominant in interneurons, as assessed from experiments with GAD67-GFP (Deltaneo) mice. Ca2+-removal was associated with significantly better preservation of dendritic structure (MAP2) following NMDA exposure, and other ionic fluxes (sensitive to Gd3+ and spermine) may contribute to residual damage occurring in Ca2+-free conditions. These results suggest that irregularly shaped dendritic swelling is a Ca2+-dependent degenerative event that may be quite different from Ca2+-independent dendritic beading, and can be a predominant type of injury in CA1 pyramidal neurons in slices.
-
Malformations of cortical development are recognized causes of chronic medically intractable epilepsy. An increasing number of observations suggests an important role for cation-chloride co-transporters (CCTs) in controlling neuronal function. Deregulation of their expression may contribute to the mechanisms of hyperexcitability that lead to seizures. ⋯ KCC2 IR was observed in neurons of different size, including large dysplastic neurons, but not in balloon cells or in glial cells with astrocytic morphology. Double-labeling experiments confirmed the differential cellular distribution of the two CCTs and their expression in GABA(A) receptor (alpha1 subunit)-positive dysplastic neurons. The cellular distribution of CCTs, with high expression of NKCC1 in dysplastic neurons and altered subcellular distribution of KCC2 resembles that of immature cortex and suggests a possible contribution of CCTs to the high epileptogenicity of malformations of cortical development.