Neuroscience
-
Erythropoietin (EPO), a hematopoietic cytokine, has recently been demonstrated to protect nigral dopaminergic neurons in a mouse model of Parkinson's disease (PD). In the present study, we tested the hypothesis that recombinant human erythropoietin (rhEPO) could protect dopaminergic neurons and improve neurobehavioral outcome in a rat model of PD. rhEPO (20 units in 2 microl of vehicle) was stereotaxically injected into one side of the striatum. 6-hydroxydopamine (6-OHDA) was injected into the same side 1 day later. Another group of rats received rhEPO (5000 u/kg, i.p.) daily for 8 days, and unilateral injection of 6-OHDA in the striatum 3 days after systemic administration of rhEPO. ⋯ In addition, there were lower levels of expression of major histocompatibility complex (MHC) class II antigens and a smaller number of activated microglia in the ipsilateral SN in intrastriatal rhEPO-treated rats than that in control rats at 2 weeks, suggesting that intrastriatal injection of rhEPO attenuated 6-OHDA-induced inflammation in the ipsilateral SN. Our results suggest that intrastriatal administration of rhEPO can protect nigral dopaminergic neurons from cell death induced by 6-OHDA and improve neurobehavioral outcome in a rat model of PD. Anti-inflammation may be one of mechanisms responsible for rhEPO neuroprotection.
-
Dopamine and GABA neurons in the ventral tegmental area project to the nucleus accumbens and prefrontal cortex and modulate locomotor and reward behaviors as well as cognitive and affective processes. Both midbrain cell types receive synapses from glutamate afferents that provide an essential control of behaviorally-linked activity patterns, although the sources of glutamate inputs have not yet been completely characterized. We used antibodies against the vesicular glutamate transporter subtypes 1 and 2 (VGlut1 and VGlut2) to investigate the morphology and synaptic organization of axons containing these proteins as putative markers of glutamate afferents from cortical versus subcortical sites, respectively, in rats. ⋯ However, the synapses onto mesoaccumbens neurons more often involved VGlut2+ terminals, whereas mesoprefrontal neurons received relatively equal synaptic inputs from VGlut1+ and VGlut2+ profiles. The distinct morphological features of VGlut1 and VGlut2 positive axons suggest that glutamate inputs from presumed cortical and subcortical sources, respectively, differ in the nature and intensity of their physiological actions on midbrain neurons. More specifically, our findings imply that subcortical glutamate inputs to the ventral tegmental area expressing VGlut2 predominate over cortical sources of excitation expressing VGlut1 and are more likely to drive the behaviorally-linked bursts in dopamine cells that signal future expectancy or attentional shifting.
-
General anesthetics are presumed to act in a distributed manner throughout the CNS. However, we found that microinjection of GABAA-receptor (GABAA-R) active anesthetics into a restricted locus in the rat brainstem, the mesopontine tegmental anesthesia area (MPTA), rapidly induces a reversible anesthesia-like state characterized by suppressed locomotion, atonia, anti-nociception and loss of consciousness. GABA-sensitive neurons in the MPTA may therefore have powerful control over major aspects of brain and spinal function. ⋯ MPTA neurons that project directly to the spinal cord were larger, on average, than those projecting to the rostromedial medulla, differed in shape, and were much more likely to express GABAA-alpha1Rs as assessed by receptor alpha-1 subunit immunoreactivity (51.4% vs. 18.9%). Thus, for the most part, separate and morphologically distinct populations of MPTA neurons project to the rostromedial medulla and to the spinal cord. Either or both may be involved in the modulation of nociception and the generation of atonia during the MPTA-induced anesthesia-like state.
-
Prostaglandin E(2) (PGE(2)) is a prototypical inflammatory mediator that excites and sensitizes cell bodies [Kwong K, Lee LY (2002) PGE(2) sensitizes cultured pulmonary vagal sensory neurons to chemical and electrical stimuli. J Appl Physiol 93:1419-1428; Kwong K, Lee LY (2005) Prostaglandin E(2) potentiates a tetrodotoxin (TTX)-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurons. J Physiol 56:437-450] and peripheral nerve terminals [Ho CY, Gu Q, Hong JL, Lee LY (2000) Prostaglandin E (2) enhances chemical and mechanical sensitivities of pulmonary C fibers in the rat. ⋯ Conversely, evEPSCs of the other eight neurons, which were PGE(2)-responsive, were abolished by 200 nM capsaicin. Furthermore, the PGE(2-)induced depression of evEPSCs was associated with an increase in the paired pulse ratio and a decrease in both the frequency and amplitude of the spontaneous excitatory postsynaptic currents (sEPSCs) and TTX-independent spontaneous miniature excitatory postsynaptic currents (mEPSCs). These results suggest that PGE(2) acts both presynaptically on nerve terminals and postsynaptically on NTS neurons to reduce glutamatergic responses.
-
Peripheral immune activation can have profound physiological and behavioral effects including induction of fever and sickness behavior. One mechanism through which immune activation or immunomodulation may affect physiology and behavior is via actions on brainstem neuromodulatory systems, such as serotonergic systems. We have found that peripheral immune activation with antigens derived from the nonpathogenic, saprophytic bacterium, Mycobacterium vaccae, activated a specific subset of serotonergic neurons in the interfascicular part of the dorsal raphe nucleus (DRI) of mice, as measured by quantification of c-Fos expression following intratracheal (12 h) or s.c. (6 h) administration of heat-killed, ultrasonically disrupted M. vaccae, or heat-killed, intact M. vaccae, respectively. ⋯ These findings suggest that the immune-responsive subpopulation of serotonergic neurons in the DRI is likely to play an important role in the neural mechanisms underlying regulation of the physiological and pathophysiological responses to both acute and chronic immune activation, including regulation of mood during health and disease states. Together with previous studies, these findings also raise the possibility that immune stimulation activates a functionally and anatomically distinct subset of serotonergic neurons, different from the subset of serotonergic neurons activated by anxiogenic stimuli or uncontrollable stressors. Consequently, selective activation of specific subsets of serotonergic neurons may have distinct behavioral outcomes.