Neuroscience
-
Among the GABAergic neocortical interneurons, fast-spiking (FS) basket and chandelier cells are essential mediators for feed-forward inhibition, network synchrony and oscillations. The FS properties are in part mediated by the voltage-gated potassium channels Kv3.1b/3.2 which allow the fast repolarization of the membrane necessary for firing non-adapting action potentials at high frequencies. It has been recently reported that the FS phenotype fails to mature in BDNF knockout mice suggesting a role for neurotrophins. ⋯ Only NT4 increased the expression of both mRNAs later in development. Kv3 protein levels were not changed by exogenous tropomyosin-related kinase B (TrkB) ligands, but the levels decreased upon inhibiting the MAPK signaling suggesting a role for endogenous factors and in particular MEK2 signaling for translation. The results show that Kv3.1b/3.2 expression is differentially controlled by neuronal activity and neurotrophic factors.
-
Strabismus in human infants is linked strongly to nasotemporal asymmetries of smooth pursuit, but many features of this co-morbidity are unknown. The purpose of this study was to determine how the duration of early-onset strabismus (or timeliness of repair) affects the severity of pursuit asymmetries in a primate model. ⋯ Binocular decorrelation in primates during an early period of fusion development causes permanent smooth pursuit asymmetries when the duration exceeds the equivalent of 3 months in human. These findings support the conclusion that early correction of infantile strabismus promotes normal development of cerebral gaze pathways.
-
Strongly inwardly rectifying K+ (Kir2) channels are endogenously expressed in rat brains and have recently been used as a tool to reduce the neuronal activity. But little is known about the role of Kir2 channels and the chronic effect of the reduced activity on the intrinsic excitability of neurons. Here we constructed a lentiviral vector that coexpressed Kir2.1 and GFP (LvKir2.1) and infected the vector to the hippocampal slice cultures. ⋯ The reduction of the firing was attributed to the hyperpolarized potential rather than to the shunting effect. These reductions were limited to modest current injections, suggesting that the overexpressed Kir2.1 plays the role of a noise-filter. Moreover, the chronic overexpression of Kir2.1 downregulated the expression of the delayed rectifier potassium current in a homeostatic manner, indicating a usefulness of this viral vector to study the activity-dependent neuronal development.
-
Classic neurotransmitter phenotypes are generally predetermined and develop as a consequence of target-independent lineage decisions. A unique mode of target-dependent phenotype instruction is the acquisition of the cholinergic phenotype in the peripheral sympathetic nervous system. A body of work suggests that the sweat gland plays an important role to determine the cholinergic phenotype at this target site. ⋯ We employed cholinergic-specific over-expression of the vesicular acetylcholine transporter (VAChT) in transgenic mice to overcome sensitivity limits in the detection of initial cholinergic sweat gland innervation. We found that VAChT immunoreactive nerve terminals were present around the sweat gland anlage already from the earliest postnatal stages on, coincident selectively at this sympathetic target with tyrosine hydroxylase-positive fibers. Our results provide a new mechanistic model for sympathetic neuron-target interaction during development, with initial selection by the target of pioneering nerve terminals expressing a cholinergic phenotype, and subsequent stabilization of this phenotype during development.
-
SR58611A is a selective beta(3)-adrenoceptor (Adrb3) agonist which has demonstrated antidepressant and anxiolytic properties in rodents. The present study confirmed the detection of Adrb3 mRNA transcript in rodent brain sub-regions and evaluated the effect of SR58611A on serotonergic and noradrenergic transmission in rats and mice in an attempt to elucidate the mechanism(s) underlying these properties. SR58611A (3 and 10 mg/kg, p.o.) increased the synthesis of 5-HT and tryptophan (Trp) levels in several rodent brain areas (cortex, hippocampus, hypothalamus, striatum). ⋯ Repeated administration of SR58611A (10 mg/kg, p.o.) did not modify basal norepinephrine release in rat prefrontal cortex whereas it prevented its tail-pinch stress-induced enhancement similarly to reboxetine (15 mg/kg, p.o.). Finally SR58611A increased the firing rate of noradrenergic neurons in the rat locus coeruleus following systemic (3 mg/kg, i.v.) or local (0.01 and 1 microM) but not chronic (10 mg/kg, p.o.) administration. These results suggest that the anxiolytic- and antidepressant-like activities of SR58611A involve an increase of brain serotonergic and noradrenergic neurotransmissions, triggered by activation of Adrb3s.