Neuroscience
-
Research indicates that pain negatively impacts attention; however, the extent of this impact and the mechanisms of the effect of pain on normal attentional processing remain unclear. This study 1) examined the impact of acute inflammatory pain on attentional processing, 2) examined the impact of morphine on attentional processing, and 3) determined if an analgesic dose of morphine would return attentional processing to normal levels. Male Sprague-Dawley rats were trained on the 5 choice serial reaction time task (5CSRTT), a test commonly used to assess the attentional mechanisms of rodents. ⋯ Likewise, a high dose of morphine (6 mg/kg) produced similar decrements in task performance. Of primary importance is that 3 mg/kg of morphine produced analgesia with only mild sedation, and performance in the 5CSRTT was improved with this dose. This is the first study to use an animal model of acute pain to demonstrate the negative impact of pain on attention, and provides a novel approach to examine the neural correlates that underlie the disruptive impact of pain on attention.
-
Reinstatement of extinguished drug-seeking has been utilized in the study of the neural substrates of relapse to drugs of abuse, particularly cocaine. However, limited studies have examined the circuitry that drives the reinstatement of heroin-seeking behavior in the presence of conditioned cues, or by heroin itself. In order to test the hypothesis that the circuitry underlying reinstatement in heroin-experienced animals would show overlapping, yet distinct differences from cocaine-experienced animals, we used transient inhibition of several cortical, striatal, and limbic brain regions during reinstatement of heroin-seeking produced by heroin-paired cues, or by a single priming dose of heroin. ⋯ The second set of reinstatement tests involved a single heroin injection (0.25 mg/kg, s.c.) following either B/M or vehicle infusions. Our results showed that vehicle-infused animals reinstated to both CS presentations and a priming injection of heroin, while B/M inactivation of several areas known to be important for the reinstatement of cocaine-seeking also attenuated heroin-seeking in response to CS presentations and/or a priming dose of heroin. However, as predicted, inactivation of areas previously shown to not affect cocaine-seeking significantly attenuated heroin-seeking, supporting the hypothesis that the circuitry underlying the reinstatement of heroin-seeking is more diffusely distributed than that for cocaine.
-
N-methyl-d-aspartate receptors (NMDARs) are critical determinants of bidirectional synaptic plasticity, however, studies of NMDAR function have been based primarily on pharmacological and electrophysiological manipulations, and it is still debated whether there are subunit-selective forms of long-term potentiation (LTP) and long-term depression (LTD). Here we provide ultrastructural analyses of axospinous synapses in cornu ammonis field 1 of hippocampus (CA1) stratum radiatum of transgenic mice with mutations to two key underlying postsynaptic density (PSD) proteins, postsynaptic density protein 95 (PSD-95) and the alpha-isoform of calcium-calmodulin-dependent protein kinase II (alphaCaMKII). Distribution profiles of synaptic proteins in these mice reveal very different patterns of subunit-specific NMDAR localization, which may be related to the divergent phenotypes of the two mutants. ⋯ In an experiment of mutual exclusivity, neither PSD-95 nor alphaCaMKII localization was found to be affected by mutations to the corresponding PSD protein suggesting that they are functionally independent of the other in the regulation of NR2A- and NR2B-containing NMDARs preceding synaptic activity. Consequently, there may exist at least two distinct PSD-95 and alphaCaMKII-specific NMDAR complexes involved in mediating LTP and LTD through opposing signal transduction pathways in synapses of the hippocampus. The contrasting phenotypes of the PSD-95 and alphaCaMKII mutant mice further establish the prospect of an independent and, possibly, competing mechanism for the regulation of NMDAR-dependent bidirectional synaptic plasticity.
-
Although a robust relationship between sleep and increased brain protein synthesis is well-documented, there have been few reports of the effects of local application of a protein synthesis inhibitor (PSI) on sleep. In this study, we compared the effects of local microdialytic administration of the protein synthesis inhibitor, anisomycin (ANI) into the lateral preoptic area (LPOA), a sleep promoting area vs. the perifornical/lateral hypothalamus (PF/LH), a wake and rapid eye movement (REM) sleep-promoting area. ⋯ ANI microdialysis into hippocampus did not affect sleep or waking. These differential effects of local protein synthesis inhibition on sleep support a hypothesis that mechanisms controlling protein synthesis are critically involved in the regulation of both NREM sleep and REM sleep.
-
We have investigated effects of letrozole, an aromatase inhibitor, on spatial learning and memory, expression of neural cell adhesion molecules (NCAM) and catecholaminergic neurotransmitters in the hippocampus and cortex of female rats. In the intact model, adult Sprague-Dawley rats were divided into four groups (n=8). Control received saline alone. ⋯ Letrozole had differential effects on noradrenaline and dopamine content in the cortex. It appears that inhibition of estrogen synthesis in the brain may have beneficial effects on spatial memory. We suggest that structural changes such as NCAM expression and catecholaminergic neurotransmitters in the hippocampus and prefrontal cortex may be the neural basis for estrogen-dependent alterations in cognitive functions.