Neuroscience
-
N-methyl-d-aspartate receptors (NMDARs) are critical determinants of bidirectional synaptic plasticity, however, studies of NMDAR function have been based primarily on pharmacological and electrophysiological manipulations, and it is still debated whether there are subunit-selective forms of long-term potentiation (LTP) and long-term depression (LTD). Here we provide ultrastructural analyses of axospinous synapses in cornu ammonis field 1 of hippocampus (CA1) stratum radiatum of transgenic mice with mutations to two key underlying postsynaptic density (PSD) proteins, postsynaptic density protein 95 (PSD-95) and the alpha-isoform of calcium-calmodulin-dependent protein kinase II (alphaCaMKII). Distribution profiles of synaptic proteins in these mice reveal very different patterns of subunit-specific NMDAR localization, which may be related to the divergent phenotypes of the two mutants. ⋯ In an experiment of mutual exclusivity, neither PSD-95 nor alphaCaMKII localization was found to be affected by mutations to the corresponding PSD protein suggesting that they are functionally independent of the other in the regulation of NR2A- and NR2B-containing NMDARs preceding synaptic activity. Consequently, there may exist at least two distinct PSD-95 and alphaCaMKII-specific NMDAR complexes involved in mediating LTP and LTD through opposing signal transduction pathways in synapses of the hippocampus. The contrasting phenotypes of the PSD-95 and alphaCaMKII mutant mice further establish the prospect of an independent and, possibly, competing mechanism for the regulation of NMDAR-dependent bidirectional synaptic plasticity.
-
Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. We have previously demonstrated that pretreatment with bone morphogenetic protein 7 (BMP7) reduced 6-hydroxydopamine-mediated neurodegeneration in a rodent model of Parkinson's disease. In this study, we examined the neuroprotective effects of BMP7 against MA-mediated toxicity in dopaminergic neurons. ⋯ High doses of MA significantly suppressed beta-gal activity in striatum, suggesting that MA may inhibit BMP7 expression at the terminals of the nigrostriatal pathway. A similar effect was also found in CD1 mice in that high doses of MA suppressed BMP7 mRNA expression in nigra. In conclusion, our data indicate that MA can cause lesioning in the nigrostriatal dopaminergic terminals and that BMP7 is protective against MA-mediated neurotoxicity in central dopaminergic neurons.