Neuroscience
-
Retracted Publication
GABAA receptors expression pattern in rat brain following low pressure distension of the stomach.
It is known that gastric mechanoreceptor stimuli are widely integrated into neuronal circuits that involve visceral nuclei of hindbrain as well as several central brain areas. GABAergic neurons are widely represented in hindbrain nuclei controlling gastric motor functions, but limited information is available specifically about GABA(A)-responding neurons in brain visceral areas. The present investigation was designed to determine the central sensory neuronal pathways and their GABA(A)-alpha1 and -alpha3 receptor presenting neurons that respond to gastric mechanoreceptor stimulation within the entire rat brain. ⋯ In contrast, during the tonic-rapid gastric distension the neuronal activation was found in hindbrain, midbrain and forebrain areas. Moreover different protocols of gastric stimulation activated diverse patterns of neurons presenting GABA(A)-alpha1 or -alpha3 receptors within responding brain nuclei, which may indicate a probable functional significance of differential expression of GABA(A)-responding neurons. The same protocol of gastric distension performed in vagotomized rats has confirmed the primary role of the vagus in the response of activation of gastric brain areas, whereas neuronal input of splanchnic origins was shown to play an important role in modulating the mechanogastric response of brain areas.
-
Deep brain stimulation (DBS) was applied in the internal segment of the globus pallidus (GPi) to treat dystonia in 10 patients. One year after surgery the Burke-Fahn-Marsden movement scores were significantly lower than preoperative values (P=0.01). Two years after surgery the mean decrease reached 65% (P=0.001) with no motor symptoms worsening. ⋯ We conclude that DBS in the GPi is a reliable surgical technique for dystonia. GPi cells discharge with distinct electrophysiological characteristics that may explain some of the symptoms in dystonia. EMG recording in the operating room helps to determine which DBS contacts produce the best benefit.
-
Lysophosphatidic acid receptor (LPA(1)) signaling initiates neuropathic pain and several pathological events in a partial sciatic nerve injury model. Recently, we reported that lysophosphatidic acid (LPA) induces neuropathic pain as well as demyelination and pain-related protein expression changes via LPA(1) receptor signaling. Lysophosphatidylcholine (LPC), also known as lysolecithin, which is hydrolyzed by autotaxin/ATX into LPA, induces similar plastic changes. ⋯ On the other hand, LPC-induced mechanical allodynia and thermal hyperalgesia were completely abolished in mice lacking an LPA(1) receptor gene. Furthermore, the LPC-induced response was also significantly, but partially reduced in heterozygous mutant mice for the ATX gene. These findings suggest that intrathecally-injected LPC is converted to LPA by ATX, and this LPA activates the LPA(1) receptor to initiate neuropathic pain.
-
The present study investigated whether the endogenous pro-inflammatory cytokines [interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha)]-dependent expression of cyclooxygenase-2 (COX-2) mRNA within the spinal cord could be involved in the development of chronic inflammatory pain-like behaviors in mice. We demonstrated that the expression of COX-2 mRNA on the ipsilateral side of the spinal cord was significantly increased 6 h and 3 days after intraplantar injection of complete Freund's adjuvant (CFA), compared with the expression in saline-treated mice. In addition, the chronic pain-like behaviors following CFA injection were markedly suppressed by repeated intrathecal (i.t.) pre-treatment with the COX-2 inhibitor etodolac, but not with the COX-1 inhibitor mofezolac. ⋯ In contrast, the expression of spinal COX-2 mRNA in CFA-treated mice was similar to that in saline-treated mice at 7 days after CFA injection. The present findings strongly indicate the early intrathecal use of the COX-2 inhibitor for the relief of chronic inflammatory pain. Furthermore, together with the result in a previous study that pro-inflammatory cytokines lead to stimulation of a NF-kappaB-dependent transcriptional pathway, these findings suggest that a spinal cytokine/NF-kappaB/COX-2 pathway may play an important role in the development, but not maintenance, of chronic pain following peripheral tissue inflammation.
-
After recovery from acute muscle pain even minor subsequent muscle use can initiate recurrence of the same mechanical hyperalgesia months or years after the initial injury. We have recently developed a model of this chronic latent hyperalgesia in the rat. In this study, we have examined the possibility that interleukin-6 (IL-6), an inflammatory mediator produced during acute muscle inflammation, can mediate the production of this chronic latent hyperalgesic state in which subsequent exposure to inflammatory mediators produces a markedly prolonged mechanical hyperalgesia. ⋯ This ability of IL-6 to produce chronic latent hyperalgesia was prevented by intrathecal administration of antisense for gp130. Furthermore, gp130 antisense also prevented chronic latent hyperalgesia produced by i.m. injection of the inflammogen, carrageenan. These results identify a role for IL-6 in acute inflammatory muscle pain and as a potential target against which therapies might be directed to treat chronic muscle pain.