Neuroscience
-
Retracted Publication
GABAA receptors expression pattern in rat brain following low pressure distension of the stomach.
It is known that gastric mechanoreceptor stimuli are widely integrated into neuronal circuits that involve visceral nuclei of hindbrain as well as several central brain areas. GABAergic neurons are widely represented in hindbrain nuclei controlling gastric motor functions, but limited information is available specifically about GABA(A)-responding neurons in brain visceral areas. The present investigation was designed to determine the central sensory neuronal pathways and their GABA(A)-alpha1 and -alpha3 receptor presenting neurons that respond to gastric mechanoreceptor stimulation within the entire rat brain. ⋯ In contrast, during the tonic-rapid gastric distension the neuronal activation was found in hindbrain, midbrain and forebrain areas. Moreover different protocols of gastric stimulation activated diverse patterns of neurons presenting GABA(A)-alpha1 or -alpha3 receptors within responding brain nuclei, which may indicate a probable functional significance of differential expression of GABA(A)-responding neurons. The same protocol of gastric distension performed in vagotomized rats has confirmed the primary role of the vagus in the response of activation of gastric brain areas, whereas neuronal input of splanchnic origins was shown to play an important role in modulating the mechanogastric response of brain areas.
-
The notion of functional interactions between the alpha7 nicotinic acetylcholine (alpha7 nACh) and the cannabinoid systems is emerging from recent in vitro and in vivo studies. Both the alpha7 nACh receptor and the cannabinoid receptor 1 (CB1) are highly expressed in the hippocampus. To begin addressing possible anatomical interactions between the alpha7 nACh and the cannabinoid systems in the rat hippocampus, we investigated the distribution of neurons expressing alpha7 nACh mRNA in relation to those containing CB1 mRNA. ⋯ We found that these alpha7 nACh/CB1 interneurons are the major subpopulation of hippocampal interneurons expressing CB1 mRNA. The alpha7 nACh expressing interneurons represent half of the detected population of CCK containing neurons in the hippocampus. Since it is well established that the vast majority of hippocampal interneurons expressing CB1 mRNA have 5-HT type 3 (5-HT3) receptors, we conclude that these hippocampal alpha7 nACh/5HT3/CB1/CCK interneurons correspond to those previously postulated to relay inputs from diverse cortical and subcortical regions about emotional, motivational, and physiological states.
-
Dorsal horn N-methyl-D-aspartate (NMDA) receptors contribute significantly to spinal nociceptive processing through an effect postsynaptic to non-primary glutamatergic axons, and perhaps presynaptic to the primary afferent terminals. The present study sought to examine the regulatory effects of NMDA receptors on primary afferent release of substance P (SP), as measured by neurokinin 1 receptor (NK1r) internalization in the spinal dorsal horn of rats. The effects of intrathecal NMDA alone or in combination with D-serine (a glycine site agonist) were initially examined on basal levels of NK1r internalization. ⋯ In subsequent in vitro experiments, perfusion of NMDA in spinal cord slice preparations did not evoke basal release of SP or calcitonin gene-related peptide (CGRP). Likewise, perfusion of NMDA did not enhance capsaicin-evoked release of the two peptides. These results suggest that presynaptic NMDA receptors in the spinal cord play little if any role on the primary afferent release of SP.
-
Pontine noradrenergic neurons of the locus coeruleus (LC) and sub-coeruleus (SubC) region cease firing during rapid eye movement sleep (REMS). This plays a permissive role in the generation of REMS and may contribute to state-dependent modulation of transmission in the CNS. Whether all pontomedullary catecholaminergic neurons, including those in the A1/C1, A2/C2 and A7 groups, have REMS-related suppression of activity has not been tested. ⋯ In contrast, neither of these correlations was significant for A1 /C1 or caudal A5 neurons. These findings suggest that, similar to the prototypic LC neurons, neurons of the A7, rostral A5 and A2/C2 groups have reduced or abolished activity during REMS, whereas A1 /IC1 and caudal A5 neurons do not have this feature. The reduced activity of A2/C2, A5 and A7 neurons during REMS, and the associated decrements in norepinephrine release, may cause state-dependent modulation of.transmission in brain somato- and viscerosensory, somatomotor, and cardiorespiratory pathways.