Neuroscience
-
Following immature excitotoxic brain damage, distinct patterns of caspase activation have been described in neurons and glial cells. Neuronal cells show activation of the mitochondrial apoptosis pathway, caspase-3 cleavage and apoptotic cell death, while reactive astrocytes show caspase-3 cleavage that is not always correlated with enzymatic protease activity and does not generally terminate in cell death. Accordingly, the aim of the present study was to evaluate the astrocytic colocalization of cleaved caspase-3 and several anti-apoptotic proteins of the inhibitor of apoptosis proteins family (IAPs), such as survivin and cellular inhibitor of apoptosis-2 (cIAP-2), and the heat shock proteins (HSPs) family, Hsp25/27 and Hsc70/Hsp70, which can all prevent caspases from cleaving their substrates. ⋯ Survivin is primarily located in the nucleus, like cleaved caspase-3; while Hsp25/27 is cytoplasmic but very frequently found in cells showing nuclear caspase-3. cIAP-2 was mostly found in damaged neurons but also in some glial scar reactive astrocytes and showed fewer correlation with caspase-3. Hsc70/Hsp70 was only expressed in injured neurons and did not correlate with caspase-3. Thus, we conclude that primarily survivin and Hsp25/27 may participate in the inhibition of cleaved caspase-3 in reactive astrocytes and may be involved in protecting astrocytes after injury.
-
Comparative Study
Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting.
Both norepinephrine and acetylcholine have been shown to be critically involved in mediating attention but there remains debate about whether they serve similar or unique functions. Much of what is known about the role of these neurochemicals in cognition is based on manipulations done at the level of the cell body but these findings are difficult to reconcile with data regarding the unique contribution of cortical subregions, e.g. the dorsolateral prefrontal cortex, to attention. ⋯ We also clarified the nature of the attentional deficits by assessing the ability of rats to disregard irrelevant stimuli. Noradrenergic lesions did not alter the ability of rats to ignore irrelevant stimuli, suggesting that the attentional deficit results from an overly focused attentional state that retards learning that a new stimulus dimension predicts reward.
-
Sodium-coupled neutral amino-acid transporter member 2 (SNAT2) belongs to the family of neutral amino-acid transporters. SNAT2 is encoded by the gene Slc38a2, whose expression was reported to increase in vitro in fibroblasts, endothelial and renal cells exposed to a hypertonic medium. SNAT2 tonicity-induced expression brings about cellular accumulation of amino-acid, which contributes to osmoadaptation to hypertonicity. ⋯ The tonicity-induced expression of SNAT2 was not observed following acute systemic hypertonicity (6 h). Our results suggest that the osmoadaptation of brain oligodendrocytes to hypertonicity relies upon amino-acid accumulation through the tonicity-induced expression of SNAT2. The possible significance of these findings in relationship to the selective loss of oligodendrocytes observed in osmotic demyelination syndrome is discussed.
-
Cytokines in brain contribute to the regulation of physiological processes and complex behavior, including sleep. The cytokines that have been most extensively studied with respect to sleep are interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-6. Administration of these cytokines into laboratory animals, or in some cases into healthy human volunteers, increases the amount of time spent in non-rapid eye movement (NREM) sleep. ⋯ No mouse received more than two doses of muIL-1beta, and administration of muIL-1beta doses was counter-balanced to eliminate potential order effects. Sleep-wake behavior was determined for 24 h after injections. i.c.v. administration of muIL-1beta increased in NREM sleep of both mouse strains in a dose-related fashion, but the maximal increase was of greater magnitude in C57Bl/6J mice. muIL-1beta induced fever in C57Bl/6J mice but not in IL-6 KO mice. Collectively, these data demonstrate IL-6 is necessary for IL-1 to induce fever, but IL-6 is not necessary for IL-1 to alter NREM sleep.
-
The mesolimbic dopaminergic system, originating from the ventral tegmental area (VTA) is implicated in the rewarding properties of ethanol. VTA dopaminergic neurons are under the tonic control of GABAergic innervations. Application of GABAergic agents changes ethanol consumption. ⋯ Thus, ethanol dually modulates GABAergic transmission to dopaminergic neurons in the VTA. Ethanol modulation depends on the activity of VTA GABAergic neurons, which were inhibited by the activation of mu-opioid receptors. This dual modulation of GABAergic transmission by ethanol may be an important mechanism underlying alcohol addiction.