Neuroscience
-
Cytokines in brain contribute to the regulation of physiological processes and complex behavior, including sleep. The cytokines that have been most extensively studied with respect to sleep are interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-6. Administration of these cytokines into laboratory animals, or in some cases into healthy human volunteers, increases the amount of time spent in non-rapid eye movement (NREM) sleep. ⋯ No mouse received more than two doses of muIL-1beta, and administration of muIL-1beta doses was counter-balanced to eliminate potential order effects. Sleep-wake behavior was determined for 24 h after injections. i.c.v. administration of muIL-1beta increased in NREM sleep of both mouse strains in a dose-related fashion, but the maximal increase was of greater magnitude in C57Bl/6J mice. muIL-1beta induced fever in C57Bl/6J mice but not in IL-6 KO mice. Collectively, these data demonstrate IL-6 is necessary for IL-1 to induce fever, but IL-6 is not necessary for IL-1 to alter NREM sleep.
-
The concentration of intracellular Ca(2+) ([Ca(2+)](i)) influences neuronal properties ranging from excitability to neurotransmitter release. Persistent inflammation is associated with changes in the properties of primary afferent neurons ranging from excitability to transmitter release. The purpose of the present study was to determine whether previously described inflammation-induced changes in excitability and transmitter release are associated with changes in the regulation of [Ca(2+)](i). ⋯ Furthermore, there were differences among subpopulations of DRG neurons with respect to changes in magnitude and/or decay of the evoked transient such that the increase in magnitude was larger in small- and medium-diameter neurons than in large diameter neurons while the decrease in the decay was greater in CAP responsive, IB4 positive, small- and medium-diameter neurons than in CAP unresponsive, IB4 negative and/or large-diameter neurons. These changes in the regulation of [Ca(2+)](i) were not due to inflammation-induced changes in passive or active electrophysiological properties. Importantly, an inflammation-induced increase in evoked Ca(2+) transients in putative nociceptive afferents may contribute to the pain and hyperalgesia associated with persistent inflammation via facilitation of transmitter release from these afferents.
-
Following immature excitotoxic brain damage, distinct patterns of caspase activation have been described in neurons and glial cells. Neuronal cells show activation of the mitochondrial apoptosis pathway, caspase-3 cleavage and apoptotic cell death, while reactive astrocytes show caspase-3 cleavage that is not always correlated with enzymatic protease activity and does not generally terminate in cell death. Accordingly, the aim of the present study was to evaluate the astrocytic colocalization of cleaved caspase-3 and several anti-apoptotic proteins of the inhibitor of apoptosis proteins family (IAPs), such as survivin and cellular inhibitor of apoptosis-2 (cIAP-2), and the heat shock proteins (HSPs) family, Hsp25/27 and Hsc70/Hsp70, which can all prevent caspases from cleaving their substrates. ⋯ Survivin is primarily located in the nucleus, like cleaved caspase-3; while Hsp25/27 is cytoplasmic but very frequently found in cells showing nuclear caspase-3. cIAP-2 was mostly found in damaged neurons but also in some glial scar reactive astrocytes and showed fewer correlation with caspase-3. Hsc70/Hsp70 was only expressed in injured neurons and did not correlate with caspase-3. Thus, we conclude that primarily survivin and Hsp25/27 may participate in the inhibition of cleaved caspase-3 in reactive astrocytes and may be involved in protecting astrocytes after injury.
-
Sodium-coupled neutral amino-acid transporter member 2 (SNAT2) belongs to the family of neutral amino-acid transporters. SNAT2 is encoded by the gene Slc38a2, whose expression was reported to increase in vitro in fibroblasts, endothelial and renal cells exposed to a hypertonic medium. SNAT2 tonicity-induced expression brings about cellular accumulation of amino-acid, which contributes to osmoadaptation to hypertonicity. ⋯ The tonicity-induced expression of SNAT2 was not observed following acute systemic hypertonicity (6 h). Our results suggest that the osmoadaptation of brain oligodendrocytes to hypertonicity relies upon amino-acid accumulation through the tonicity-induced expression of SNAT2. The possible significance of these findings in relationship to the selective loss of oligodendrocytes observed in osmotic demyelination syndrome is discussed.
-
Granulocyte colony-stimulating factor (G-CSF) is a potent hematopoietic factor. Recently, this factor has been shown to exhibit neuroprotective effects on many CNS injuries. Spinal cord ischemic injury that frequently results in paraplegia is a major cause of morbidity after thoracic aorta operations. ⋯ In addition, G-CSF inhibited the ischemia-induced activation of p38 in the astrocytes. Furthermore, we concluded that i.t. G-CSF produced a significant increase in phospho-Akt and phospho-ERK in the motor neurons and exhibited beneficial effects on the spinal cord ischemia-induced neurological defects.