Neuroscience
-
The neurosteroid allopregnanolone (3alpha,5alpha-THP) is well characterized as a potentially therapeutic molecule which exerts important neurobiological actions including neuroprotective, antidepressant, anxiolytic, anesthetic and analgesic effects. We have recently observed that neurons and glial cells of the rat spinal cord (SC) contain various key steroidogenic enzymes such as 5alpha-reductase and 3alpha-hydroxysteroid oxido-reductase which are crucial for 3alpha,5alpha-THP biosynthesis. Furthermore, we demonstrated that the rat SC actively produces 3alpha,5alpha-THP. ⋯ These results demonstrate that glycine and gelsemine, acting via Gly-R, upregulate 3alpha,5alpha-THP biosynthesis in the SC. The data also revealed a structure-activity relationship of the analogs strychnine and gelsemine on neurosteroidogenesis. Possibilities are opened for glycinergic agents and gelsemine utilization to stimulate selectively 3alpha,5alpha-THP biosynthetic pathways in diseases evoked by a decreased neurosteroidogenic activity of nerve cells.
-
In a previous study, it was shown that populations of climbing fibers, derived from the inferior olivary complex (IOC) contain the peptide corticotropin releasing factor (CRF) and that the expression of this peptide in climbing fibers could be modulated by the level of activity in olivary afferents. The intent of this study was to determine if there was comparable plasticity in the distribution of the type 1 CRF receptor (CRF-R1) in the cerebellum of the rat. Our results indicate that CRF-R1 was localized primarily to Purkinje cell somata and their primary dendrites and granule cells. ⋯ Further, interneurons responded with a decrease in receptor expression following more intense levels of stimulation suggesting the possibility of internalization of the receptor. In contrast, Bergmann glial cells showed an increased expression in receptor expression. These data suggest that CRF released from climbing fibers may modulate the physiological properties of basket and stellate cells as well as having a heretofore unidentified and potentially unique effect on Bergmann glia.
-
The dorsal striatum (DS) is involved in various forms of learning and memory such as procedural learning, habit learning, reward-association and emotional learning. We have previously reported that bilateral DS lesions disrupt tone fear conditioning (TFC), but not contextual fear conditioning (CFC) [Ferreira TL, Moreira KM, Ikeda DC, Bueno OFA, Oliveira MGM (2003) Effects of dorsal striatum lesions in tone fear conditioning and contextual fear conditioning. Brain Res 987:17-24]. ⋯ Overall, the present results underscore that other routes, aside from the well-established CeA projections to the periaqueductal gray, may contribute to the acquisition/consolidation of the freezing response associated to a TFC task. It is suggested that CeA may presumably influence DS processing via a synaptic relay on dopaminergic neurons of the substantia nigra compacta and retrorubral nucleus. The present observations are also in line with other studies showing that TFC and CFC responses are mediated by different anatomical networks.
-
The ventral tegmental area (VTA) is a nodal link in reward circuitry. Based on its striatal output, it has been subdivided in a caudomedial part which targets the ventromedial striatum, and a lateral part which targets the ventrolateral striatum [Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27-78]. ⋯ In general, these projections, like the spiralated striato-nigro-striatal loops, display a medial-to-lateral organization. This anatomical arrangement conceivably permits the ventromedial striatum to influence the activity of the lateral striatum. The caudal pole of the VTA appears to be a critical site for a global recruitment of the mesotelencephalic system.
-
This study was designed to determine the organization of nociceptive inputs with different behavioral significance into spinal-brainstem circuits in the rat. Induction of Fos protein was used to localize spinal dorsal horn and hypothalamic neurons activated by noxious heating of the hind paw dorsum at rates known to preferentially activate C- or A-heat nociceptors. This was combined with retrograde transport of cholera toxin subunit B from the dorsolateral/lateral- (DL/L-) or the ventrolateral- (VL-) periaqueductal gray (PAG) in order to map the organization of A- and C-fiber input to spinal-brainstem circuits. ⋯ A-fiber-activated neurons were found throughout the rostral hypothalamus but those projecting to the PAG were focused in the lateral area of the anterior hypothalamus (LAAH), from where approximately 20% projected to the VL-PAG, which was significantly more than to the DL/L PAG (P<0.05). We hypothesize that the organization of A- versus C-fiber inputs to the PAG enables the coordination of coping strategies appropriate to meet the demands imposed by these different noxious stimuli. Hypothalamic-PAG projections activated by A-fiber inputs did not reflect this level of organization and we suggest that this may relate to their role in thermoregulation as opposed to autonomic responses to particular nociceptive inputs.