Neuroscience
-
On the basis of numerous studies that have described interactions between the dopaminergic and opioidergic systems, we have investigated whether genetic deletion of dopamine D2 receptors (D2R) might influence the expression of central opioid receptors. The levels of mu, delta, kappa and nociceptin opioid peptide receptors were determined in the brains and spinal cords of D2R knockout mice using quantitative autoradiography. The significant changes in opioid receptor binding found in the brains of heterozygous and homozygous mice were mainly restricted to the basal ganglia. ⋯ Significant increases in nociceptin receptor binding were also observed in homozygous mice in brain areas involved in motor behavior. At the spinal level, only kappa and nociceptin receptor binding showed significant overall differences between genotypes. The functional consequences of these adaptive changes are discussed in relation to the findings of behavioral and neurochemical studies reported to date in D2R knockout mice.
-
To define mechanisms underlying neurovascular injury following brain embolism-induced neurodegeneration, we investigated temporal and spatial pathological changes in brain microvessels up to 12 weeks after microsphere embolism (ME) induction in aged male rats. Mild ME upregulated endothelial nitric oxide synthase (eNOS) and protein tyrosine nitration in brain microvessels. Strong beta-amyloid immunoreactivity coincident with increased eNOS immunoreactivity was observed in microvessels. ⋯ Importantly, beta-amyloid accumulation in brain parenchyma was also observed in areas surrounding injured microvessels at 12 weeks. Levels of Alzheimer's-related hyperphosphorylated tau proteins also concomitantly increased in neurons surrounding regions of beta-amyloid accumulation 12 weeks after ME induction, as did glycogen synthase kinase (GSK3beta) (Tyr-216) phosphorylation. Taken together, ME-induced aberrant eNOS expression and subsequent protein tyrosine nitration in microvessels preceded beta-amyloid accumulation both in microvessels and brain parenchyma, leading to hyperphosphorylation of neuronal tau proteins through GSK3beta activation.
-
Subcutaneous formalin injection has been used extensively to evaluate acute effects (over several hours) of chemical nociceptive stimulation on nociceptive reflexes. Also, a persistent hyperreflexia for mechanical and thermal stimulation, lasting 3 weeks after formalin injection, has been revealed and related to microglial activation in the spinal dorsal horn. The present study demonstrates more prolonged effects of formalin injection, lasting 6 weeks, on operant escape from nociceptive thermal stimulation. ⋯ Normal reductions in skin temperature during thermal stimulation were attenuated (nearly eliminated) at 1 and 2 weeks after formalin injection and partially recovered by 10 weeks. Thus, formalin-induced tissue injury produced a long-term secondary hyperalgesia, accompanied by a reduced sympathetic responsivity. The similar time-course for these phenomena suggests that there are mechanistic linkages between focal injury, autonomic dysregulation and enhanced pain sensitivity.
-
Protein kinase C gamma (PKCgamma) is widely distributed throughout the CNS and is thought to play a role in long term hyper-excitability in nociceptive neurones. Here, we provide the first report of PKCgamma cells in the dorsal column nuclei of the adult rat. Retrograde labeling of PKCgamma cells from the thalamus with choleragenoid revealed that 25% of the PKCgamma positive gracile cells projected to the thalamus. ⋯ Quantitative analysis of the number of PKCgamma positive gracile cells that expressed also c-fos increased from none to 24% after injury, indicating an alteration in the sensory activation pattern in these neurones after injury. C-fos was not induced in inner lamina II following c-fiber electrical stimulation of the intact or axotomized sciatic nerve, indicating no such plasticity at the spinal cord level. As dorsal column nuclei cells may contribute to allodynia after peripheral nerve injury, pharmacological modulation of PKCgamma activity may therefore be a possible way to ameliorate neuropathic pain after peripheral nerve injury.
-
L5/L6 spinal nerve ligation (SNL) in rodents induces behavioral signs similar to the symptoms of neuropathic pain in humans. L5/L6 SNL in rats has been well characterized so far, but there have been few studies using mice. In this study, we established an L5/L6 SNL model in mice and examined the effects of known antinociceptive drugs in the model. ⋯ This mouse L5/L6 SNL model represents a robust mechanical allodynia, which shows a similar pharmacological response to that reported in rats and human patients with neuropathic pain. The pattern changes in gene expression also resembled those reported in rats. This model will therefore be useful for investigation of the effects of novel antinociceptive compounds and the mechanisms of neuropathic pain.